Suppr超能文献

基于半监督排序和相关性反馈的多媒体检索框架。

A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

机构信息

College of Computer Science, Zhejiang University, Hangzhou, China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):723-42. doi: 10.1109/TPAMI.2011.170.

Abstract

We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

摘要

我们提出了一个新的多媒体内容分析和检索框架,它由两个独立的算法组成。首先,我们提出了一种新的半监督算法,称为排序的局部回归和全局对齐(LRGA),用于学习数据排序的鲁棒拉普拉斯矩阵。在 LRGA 中,对于每个数据点,使用局部线性回归模型来预测其邻近点的排序得分。然后提出了一个统一的目标函数来全局对齐所有数据点的局部模型,以便为每个数据点分配最佳的排序得分。其次,我们提出了一种半监督的长期相关性反馈(RF)算法来改进多媒体数据表示。所提出的长期 RF 算法利用多媒体特征空间中的多媒体数据分布和用户提供的历史 RF 信息。然后通过一种有效的算法来解决轨迹比优化问题。该算法已经应用于多个基于内容的多媒体检索应用,包括跨媒体检索、图像检索和 3D 运动/姿态数据检索。在四个数据集上的综合实验表明了它在精度、鲁棒性、可扩展性和计算效率方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验