Anal Chem. 2011 Sep 15;83(18):6913-7. doi: 10.1021/ac201407z. Epub 2011 Aug 22.
The highest Raman enhancement factors are obtained in a double resonance: molecular electronic resonance and plasmon resonance with a "hot spot" in surface-enhanced Raman scattering (SERS). However, for most molecules of interest the double resonance is not realized with the excitation frequencies normally used in Raman. The latter may limit the practical applications of SERS for trace analysis. Here, we report that Raman-inactive trinitrotoluene (TNT) lights up the ultrahigh Raman scattering of off-resonated p-aminobenzenethiol (PABT) through the formation of charge-transfer TNT-PABT complex on the top-closed flexible silver nanotube array. Raman hot spots can spontaneously form in a reversible way by the self-approaching of flexible nanotubes driven through the capillary force of solvent evaporation. Meanwhile, the PABT-TNT-PABT bridges between self-approaching silver nanotubes possibly form by the specific complexing and zwitterion interactions, and the resultant chromophores can absorb the visible light that matches with the incident laser and the localized surface plasmon of a silver nanotube array. The multiple spectral resonances lead to the huge enhancement of Raman signals of PABT molecules due to the presence of ultratrace TNT. The enhancement effect is repeatedly renewable by the reconstruction of molecular bridges and can selectively detect TNT with a limit of 1.5 × 10(-17) M. The results in this report provide the simple and supersensitive approach to the detection of TNT explosives and the possibility of building a robust Raman-based assay platform.
分子电子共振和等离子体共振与表面增强拉曼散射(SERS)中的“热点”。然而,对于大多数感兴趣的分子,双共振在拉曼中通常使用的激发频率下无法实现。后者可能限制了 SERS 在痕量分析中的实际应用。在这里,我们报告说,通过在顶部封闭的柔性银纳米管阵列上形成电荷转移三硝基甲苯(TNT)-对氨基苯硫醇(PABT)配合物,拉曼非活性的三硝基甲苯(TNT)使离共振的对氨基苯硫醇(PABT)的超高拉曼散射发光。通过溶剂蒸发的毛细力驱动的柔性纳米管的自接近,可以以可逆的方式自发形成拉曼热点。同时,自接近的银纳米管之间可能通过特定的络合和两性离子相互作用形成 PABT-TNT-PABT 桥,并且所得的生色团可以吸收与入射激光和银纳米管阵列的局域表面等离子体匹配的可见光。多个光谱共振导致 PABT 分子的拉曼信号大大增强,因为存在痕量的 TNT。通过分子桥的重建,可以重复增强效果,并且可以以 1.5×10(-17) M 的极限选择性检测 TNT。本报告中的结果为 TNT 爆炸物的检测提供了简单而超灵敏的方法,并为构建稳健的基于拉曼的分析平台提供了可能性。