Suppr超能文献

膜蛋白的结晶伴侣策略。

Crystallization chaperone strategies for membrane proteins.

机构信息

School of Chemistry and Biochemistry, Institute for Bioscience and Bioengineering, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.

出版信息

Methods. 2011 Dec;55(4):293-302. doi: 10.1016/j.ymeth.2011.08.004. Epub 2011 Aug 11.

Abstract

From G protein-coupled receptors to ion channels, membrane proteins represent over half of known drug targets. Yet, structure-based drug discovery is hampered by the dearth of available three-dimensional models for this large category of proteins. Other than efforts to improve membrane protein expression and stability, current strategies to improve the ability of membrane proteins to crystallize involve examining many orthologs and DNA constructs, testing the effects of different detergents for purification and crystallization, creating a lipidic environment during crystallization, and cocrystallizing with covalent or non-covalent soluble protein chaperones with an intrinsic high propensity to crystallize. In this review, we focus on this last category, highlighting successes of crystallization chaperones in membrane protein structure determination and recent developments in crystal chaperone engineering, including molecular display to enhance chaperone crystallizability, and end with a novel generic approach in development to target any membrane protein of interest.

摘要

从 G 蛋白偶联受体到离子通道,膜蛋白代表了已知药物靶点的一半以上。然而,基于结构的药物发现受到这一大类蛋白质缺乏可用的三维模型的阻碍。除了努力提高膜蛋白的表达和稳定性外,目前提高膜蛋白结晶能力的策略包括检查许多同源物和 DNA 构建体,测试不同去污剂对纯化和结晶的影响,在结晶过程中创建脂质环境,以及与具有固有高结晶倾向的共价或非共价可溶性蛋白伴侣共结晶。在这篇综述中,我们重点介绍了最后一类,强调了结晶伴侣在膜蛋白结构测定中的成功应用,以及晶体伴侣工程的最新进展,包括分子展示以增强伴侣的结晶能力,并以正在开发的针对任何感兴趣的膜蛋白的新型通用方法结束。

相似文献

1
Crystallization chaperone strategies for membrane proteins.
Methods. 2011 Dec;55(4):293-302. doi: 10.1016/j.ymeth.2011.08.004. Epub 2011 Aug 11.
2
New concepts and aids to facilitate crystallization.
Curr Opin Struct Biol. 2013 Jun;23(3):409-16. doi: 10.1016/j.sbi.2013.03.003. Epub 2013 Apr 8.
4
Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):896-906. doi: 10.1107/S1399004715001856. Epub 2015 Mar 27.
5
Membrane proteins, detergents and crystals: what is the state of the art?
Acta Crystallogr F Struct Biol Commun. 2014 Dec 1;70(Pt 12):1576-83. doi: 10.1107/S2053230X14025035. Epub 2014 Nov 28.
6
Use of detergents in two-dimensional crystallization of membrane proteins.
Biochim Biophys Acta. 2000 Nov 23;1508(1-2):112-28. doi: 10.1016/s0005-2736(00)00307-2.
8
Multicolor fluorescence-based screening toward structural analysis of multiprotein membrane complexes.
Methods Enzymol. 2015;557:3-26. doi: 10.1016/bs.mie.2014.11.043. Epub 2015 Jan 10.
9
A guide to membrane protein X-ray crystallography.
FEBS J. 2021 Oct;288(20):5788-5804. doi: 10.1111/febs.15676. Epub 2020 Dec 31.
10
Rapid and simple protein-stability screens: application to membrane proteins.
Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):451-7. doi: 10.1107/S0907444906005233. Epub 2006 Mar 18.

引用本文的文献

1
Preparing for successful protein crystallization experiments.
Acta Crystallogr F Struct Biol Commun. 2025 Jul 1;81(Pt 7):272-280. doi: 10.1107/S2053230X25004650. Epub 2025 Jun 2.
2
General Strategies for RNA X-ray Crystallography.
Molecules. 2023 Feb 23;28(5):2111. doi: 10.3390/molecules28052111.
3
Co-crystallization with diabodies: A case study for the introduction of synthetic symmetry.
Structure. 2021 Jun 3;29(6):598-605.e3. doi: 10.1016/j.str.2021.02.001. Epub 2021 Feb 25.
5
Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2.
Proc Natl Acad Sci U S A. 2018 Oct 2;115(40):10010-10015. doi: 10.1073/pnas.1805343115. Epub 2018 Sep 17.
7
De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide.
Sci Rep. 2017 Aug 31;7(1):10295. doi: 10.1038/s41598-017-10737-9.
10
Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization.
Sci Rep. 2016 Feb 24;6:21925. doi: 10.1038/srep21925.

本文引用的文献

1
Crystallizing membrane proteins for structure-function studies using lipidic mesophases.
Biochem Soc Trans. 2011 Jun;39(3):725-32. doi: 10.1042/BST0390725.
2
Principles of activation and permeation in an anion-selective Cys-loop receptor.
Nature. 2011 Jun 2;474(7349):54-60. doi: 10.1038/nature10139. Epub 2011 May 15.
3
Peptide surfactants for cell-free production of functional G protein-coupled receptors.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9049-54. doi: 10.1073/pnas.1018185108. Epub 2011 May 11.
4
Rotation and structure of FoF1-ATP synthase.
J Biochem. 2011 Jun;149(6):655-64. doi: 10.1093/jb/mvr049. Epub 2011 Apr 26.
5
It's all in the crystals….
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):243-8. doi: 10.1107/S0907444911007797. Epub 2011 Mar 18.
6
Structure of an agonist-bound human A2A adenosine receptor.
Science. 2011 Apr 15;332(6027):322-7. doi: 10.1126/science.1202793. Epub 2011 Mar 10.
7
Designed ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the dominant interface.
J Struct Biol. 2011 May;174(2):269-81. doi: 10.1016/j.jsb.2011.01.014. Epub 2011 Feb 4.
8
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
Nature. 2011 Jan 13;469(7329):236-40. doi: 10.1038/nature09665.
9
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.
10
Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1314-9. doi: 10.1073/pnas.1008560108. Epub 2011 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验