Suppr超能文献

用于识别显著生物学通路的贝叶斯基因集分析

Bayesian gene set analysis for identifying significant biological pathways.

作者信息

Shahbaba Babak, Tibshirani Robert, Shachaf Catherine M, Plevritis Sylvia K

机构信息

Department of Statistics, University of California, Irvine, CA, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2011 Aug 1;60(4):541-557. doi: 10.1111/j.1467-9876.2011.00765.x.

Abstract

We propose a hierarchical Bayesian model for analyzing gene expression data to identify pathways differentiating between two biological states (e.g., cancer vs. non-cancer and mutant vs. normal). Finding significant pathways can improve our understanding of biological processes. When the biological process of interest is related to a specific disease, eliciting a better understanding of the underlying pathways can lead to designing a more effective treatment. We apply our method to data obtained by interrogating the mutational status of p53 in 50 cancer cell lines (33 mutated and 17 normal). We identify several significant pathways with strong biological connections. We show that our approach provides a natural framework for incorporating prior biological information, and it has the best overall performance in terms of correctly identifying significant pathways compared to several alternative methods.

摘要

我们提出了一种用于分析基因表达数据的分层贝叶斯模型,以识别区分两种生物学状态(例如,癌症与非癌症、突变与正常)的通路。找到显著的通路可以增进我们对生物学过程的理解。当感兴趣的生物学过程与特定疾病相关时,更好地理解潜在通路有助于设计更有效的治疗方法。我们将我们的方法应用于通过询问50个癌细胞系(33个突变的和17个正常的)中p53的突变状态而获得的数据。我们识别出了几条具有强烈生物学联系的显著通路。我们表明,我们的方法提供了一个纳入先验生物学信息的自然框架,并且与几种替代方法相比,在正确识别显著通路方面具有最佳的整体性能。

相似文献

1
Bayesian gene set analysis for identifying significant biological pathways.
J R Stat Soc Ser C Appl Stat. 2011 Aug 1;60(4):541-557. doi: 10.1111/j.1467-9876.2011.00765.x.
3
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors.
BMC Bioinformatics. 2017 Dec 28;18(Suppl 14):552. doi: 10.1186/s12859-017-1893-4.
4
6
Improving gene set analysis of microarray data by SAM-GS.
BMC Bioinformatics. 2007 Jul 5;8:242. doi: 10.1186/1471-2105-8-242.
7
BAGSE: a Bayesian hierarchical model approach for gene set enrichment analysis.
Bioinformatics. 2020 Mar 1;36(6):1689-1695. doi: 10.1093/bioinformatics/btz831.
8
A Bayesian Approach to Pathway Analysis by Integrating Gene-Gene Functional Directions and Microarray Data.
Stat Biosci. 2012 May 1;4(1):105-131. doi: 10.1007/s12561-011-9046-1. Epub 2011 Dec 29.
9
A pathway analysis method for genome-wide association studies.
Stat Med. 2012 May 10;31(10):988-1000. doi: 10.1002/sim.4477. Epub 2012 Feb 3.
10
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.

引用本文的文献

1
Penalized partial least squares for pleiotropy.
BMC Bioinformatics. 2021 Feb 24;22(1):86. doi: 10.1186/s12859-021-03968-1.
3
Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.
PLoS Comput Biol. 2015 Jun 25;11(6):e1004310. doi: 10.1371/journal.pcbi.1004310. eCollection 2015 Jun.
4
An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.
PLoS One. 2013 Jul 3;8(7):e67672. doi: 10.1371/journal.pone.0067672. Print 2013.
6
A network-based gene-weighting approach for pathway analysis.
Cell Res. 2012 Mar;22(3):565-80. doi: 10.1038/cr.2011.149. Epub 2011 Sep 6.

本文引用的文献

1
Regulatory networks define phenotypic classes of human stem cell lines.
Nature. 2008 Sep 18;455(7211):401-5. doi: 10.1038/nature07213. Epub 2008 Aug 24.
2
Group additive regression models for genomic data analysis.
Biostatistics. 2008 Jan;9(1):100-13. doi: 10.1093/biostatistics/kxm015. Epub 2007 May 18.
3
Transcriptional profiling of aging in human muscle reveals a common aging signature.
PLoS Genet. 2006 Jul;2(7):e115. doi: 10.1371/journal.pgen.0020115.eor. Epub 2006 Jun 9.
4
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
5
Calculating the statistical significance of changes in pathway activity from gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article16. doi: 10.2202/1544-6115.1055. Epub 2004 Jun 22.
6
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. doi: 10.1073/pnas.0506580102. Epub 2005 Sep 30.
7
The p53 pathway: positive and negative feedback loops.
Oncogene. 2005 Apr 18;24(17):2899-908. doi: 10.1038/sj.onc.1208615.
8
Significance analysis of functional categories in gene expression studies: a structured permutation approach.
Bioinformatics. 2005 May 1;21(9):1943-9. doi: 10.1093/bioinformatics/bti260. Epub 2005 Jan 12.
9
Statistical concerns about the GSEA procedure.
Nat Genet. 2004 Jul;36(7):663; author reply 663. doi: 10.1038/ng0704-663a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验