Suppr超能文献

用于识别显著生物学通路的贝叶斯基因集分析

Bayesian gene set analysis for identifying significant biological pathways.

作者信息

Shahbaba Babak, Tibshirani Robert, Shachaf Catherine M, Plevritis Sylvia K

机构信息

Department of Statistics, University of California, Irvine, CA, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2011 Aug 1;60(4):541-557. doi: 10.1111/j.1467-9876.2011.00765.x.

Abstract

We propose a hierarchical Bayesian model for analyzing gene expression data to identify pathways differentiating between two biological states (e.g., cancer vs. non-cancer and mutant vs. normal). Finding significant pathways can improve our understanding of biological processes. When the biological process of interest is related to a specific disease, eliciting a better understanding of the underlying pathways can lead to designing a more effective treatment. We apply our method to data obtained by interrogating the mutational status of p53 in 50 cancer cell lines (33 mutated and 17 normal). We identify several significant pathways with strong biological connections. We show that our approach provides a natural framework for incorporating prior biological information, and it has the best overall performance in terms of correctly identifying significant pathways compared to several alternative methods.

摘要

我们提出了一种用于分析基因表达数据的分层贝叶斯模型,以识别区分两种生物学状态(例如,癌症与非癌症、突变与正常)的通路。找到显著的通路可以增进我们对生物学过程的理解。当感兴趣的生物学过程与特定疾病相关时,更好地理解潜在通路有助于设计更有效的治疗方法。我们将我们的方法应用于通过询问50个癌细胞系(33个突变的和17个正常的)中p53的突变状态而获得的数据。我们识别出了几条具有强烈生物学联系的显著通路。我们表明,我们的方法提供了一个纳入先验生物学信息的自然框架,并且与几种替代方法相比,在正确识别显著通路方面具有最佳的整体性能。

相似文献

1
Bayesian gene set analysis for identifying significant biological pathways.用于识别显著生物学通路的贝叶斯基因集分析
J R Stat Soc Ser C Appl Stat. 2011 Aug 1;60(4):541-557. doi: 10.1111/j.1467-9876.2011.00765.x.
9
A pathway analysis method for genome-wide association studies.全基因组关联研究的通路分析方法。
Stat Med. 2012 May 10;31(10):988-1000. doi: 10.1002/sim.4477. Epub 2012 Feb 3.

引用本文的文献

1
Penalized partial least squares for pleiotropy.惩罚偏最小二乘法用于研究基因多效性。
BMC Bioinformatics. 2021 Feb 24;22(1):86. doi: 10.1186/s12859-021-03968-1.
3
Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.纵向基因表达数据的时间进程基因集分析
PLoS Comput Biol. 2015 Jun 25;11(6):e1004310. doi: 10.1371/journal.pcbi.1004310. eCollection 2015 Jun.
6
A network-based gene-weighting approach for pathway analysis.基于网络的基因加权通路分析方法。
Cell Res. 2012 Mar;22(3):565-80. doi: 10.1038/cr.2011.149. Epub 2011 Sep 6.

本文引用的文献

2
Group additive regression models for genomic data analysis.用于基因组数据分析的分组加法回归模型。
Biostatistics. 2008 Jan;9(1):100-13. doi: 10.1093/biostatistics/kxm015. Epub 2007 May 18.
7
The p53 pathway: positive and negative feedback loops.p53信号通路:正反馈和负反馈回路
Oncogene. 2005 Apr 18;24(17):2899-908. doi: 10.1038/sj.onc.1208615.
9
Statistical concerns about the GSEA procedure.关于基因集富集分析(GSEA)程序的统计学问题。
Nat Genet. 2004 Jul;36(7):663; author reply 663. doi: 10.1038/ng0704-663a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验