Suppr超能文献

在铜绿假单胞菌生物膜治疗的药代动力学/药效动力学模型中,突变体和抗生素耐药性群体的动态变化。

Dynamics of mutator and antibiotic-resistant populations in a pharmacokinetic/pharmacodynamic model of Pseudomonas aeruginosa biofilm treatment.

机构信息

Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Palma de Mallorca, Spain.

出版信息

Antimicrob Agents Chemother. 2011 Nov;55(11):5230-7. doi: 10.1128/AAC.00617-11. Epub 2011 Aug 22.

Abstract

Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently tagged PAO1 and PAOMS (mutator [mutS] derivative) strains. Two-day-old biofilms were treated with ciprofloxacin (CIP) for 4 days (t4) at 2 μg/ml, which correlated with the mutant prevention concentration (MPC) and provided an AUC/MIC ratio of 384 that should predict therapeutic success. Biofilms were monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One-step resistant mutants (MexCD-OprJ or MexEF-OprN overexpression) were selected for both strains, while two-step resistant mutants (additional GyrA or GyrB mutation) were readily selected only from the mutator strain. CLSM analysis of competition experiments revealed that PAOMS, even when inoculated at a 0.01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting that the increased antibiotic tolerance driven by the special biofilm physiology and architecture may raise the effective MPC, favoring gradual mutational resistance development, especially in mutator strains. Moreover, the amplification of mutator populations under antibiotic treatment by coselection with resistance mutations is for the first time demonstrated in situ for P. aeruginosa biofilms.

摘要

生物膜的生长、抗生素耐药性和突变表型是铜绿假单胞菌在囊性纤维化患者慢性呼吸道感染的关键因素。我们使用荧光标记的 PAO1 和 PAOMS(突变体[mutS]衍生物)菌株,检查了铜绿假单胞菌流动池生物膜中突变体和抗生素耐药群体的动态变化。将两天大的生物膜用环丙沙星(CIP)处理 4 天(t4),浓度为 2 μg/ml,这与突变预防浓度(MPC)相关,并提供 384 的 AUC/MIC 比值,这应该可以预测治疗成功。通过共聚焦激光扫描显微镜(CLSM)监测生物膜,并确定活细胞和耐药突变体(4 倍和 16 倍 MIC)的数量。尽管优化了药代动力学/药效学(PK/PD)参数,但 CIP 治疗并不能抑制铜绿假单胞菌生物膜中的耐药性发展。两种菌株都选择了一步耐药突变体(MexCD-OprJ 或 MexEF-OprN 过表达),而只有突变体菌株容易选择两步耐药突变体(额外的 GyrA 或 GyrB 突变)。竞争实验的 CLSM 分析表明,即使在接种比例为 0.01 的情况下,PAOMS 在 CIP 处理仅两天后就接管了整个生物膜,在 t4 时比 PAO1 多 3 个对数级。我们的结果表明,突变机制在生物膜抗生素耐药性中起主要作用,并且理论上优化的 PK/PD 参数无法抑制耐药性发展,这表明特殊的生物膜生理学和结构驱动的抗生素耐受性增加可能会提高有效 MPC,有利于逐渐发生突变耐药性发展,尤其是在突变体菌株中。此外,首次在铜绿假单胞菌生物膜中现场证明了抗生素处理下突变体群体的共选择与耐药突变的扩增。

相似文献

1
Dynamics of mutator and antibiotic-resistant populations in a pharmacokinetic/pharmacodynamic model of Pseudomonas aeruginosa biofilm treatment.
Antimicrob Agents Chemother. 2011 Nov;55(11):5230-7. doi: 10.1128/AAC.00617-11. Epub 2011 Aug 22.
7
Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.
Antimicrob Agents Chemother. 2009 Apr;53(4):1552-60. doi: 10.1128/AAC.01264-08. Epub 2009 Feb 2.
9
Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 2001 Jun;45(6):1761-70. doi: 10.1128/AAC.45.6.1761-1770.2001.

引用本文的文献

2
Molecular basis of the phenotypic variants arising from a mutator.
Microb Genom. 2023 Oct;9(10). doi: 10.1099/mgen.0.001118.
5
Pulse Dosing of Antibiotic Enhances Killing of a Biofilm.
Front Microbiol. 2020 Nov 9;11:596227. doi: 10.3389/fmicb.2020.596227. eCollection 2020.
8
Tolerance and Resistance of Biofilms to Antimicrobial Agents-How Can Escape Antibiotics.
Front Microbiol. 2019 May 3;10:913. doi: 10.3389/fmicb.2019.00913. eCollection 2019.
9
Social Behavior of Antibiotic Resistant Mutants Within Biofilm Communities.
Front Microbiol. 2019 Mar 22;10:570. doi: 10.3389/fmicb.2019.00570. eCollection 2019.

本文引用的文献

1
Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth.
Antimicrob Agents Chemother. 2011 Oct;55(10):4560-8. doi: 10.1128/AAC.00519-11. Epub 2011 Aug 1.
2
Evolutionary dynamics of bacteria in a human host environment.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7481-6. doi: 10.1073/pnas.1018249108. Epub 2011 Apr 25.
4
Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa.
J Infect Dis. 2010 Nov 15;202(10):1585-92. doi: 10.1086/656788. Epub 2010 Oct 13.
6
Efficacy of the combination of tobramycin and a macrolide in an in vitro Pseudomonas aeruginosa mature biofilm model.
Antimicrob Agents Chemother. 2010 Oct;54(10):4409-15. doi: 10.1128/AAC.00372-10. Epub 2010 Aug 9.
7
An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):253-68. doi: 10.1111/j.1574-695X.2010.00690.x. Epub 2010 Apr 23.
9
Role of mutation in Pseudomonas aeruginosa biofilm development.
PLoS One. 2009 Jul 16;4(7):e6289. doi: 10.1371/journal.pone.0006289.
10
Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants.
Antimicrob Agents Chemother. 2009 Apr;53(4):1552-60. doi: 10.1128/AAC.01264-08. Epub 2009 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验