Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Palma de Mallorca, Spain.
Antimicrob Agents Chemother. 2011 Nov;55(11):5230-7. doi: 10.1128/AAC.00617-11. Epub 2011 Aug 22.
Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently tagged PAO1 and PAOMS (mutator [mutS] derivative) strains. Two-day-old biofilms were treated with ciprofloxacin (CIP) for 4 days (t4) at 2 μg/ml, which correlated with the mutant prevention concentration (MPC) and provided an AUC/MIC ratio of 384 that should predict therapeutic success. Biofilms were monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One-step resistant mutants (MexCD-OprJ or MexEF-OprN overexpression) were selected for both strains, while two-step resistant mutants (additional GyrA or GyrB mutation) were readily selected only from the mutator strain. CLSM analysis of competition experiments revealed that PAOMS, even when inoculated at a 0.01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting that the increased antibiotic tolerance driven by the special biofilm physiology and architecture may raise the effective MPC, favoring gradual mutational resistance development, especially in mutator strains. Moreover, the amplification of mutator populations under antibiotic treatment by coselection with resistance mutations is for the first time demonstrated in situ for P. aeruginosa biofilms.
生物膜的生长、抗生素耐药性和突变表型是铜绿假单胞菌在囊性纤维化患者慢性呼吸道感染的关键因素。我们使用荧光标记的 PAO1 和 PAOMS(突变体[mutS]衍生物)菌株,检查了铜绿假单胞菌流动池生物膜中突变体和抗生素耐药群体的动态变化。将两天大的生物膜用环丙沙星(CIP)处理 4 天(t4),浓度为 2 μg/ml,这与突变预防浓度(MPC)相关,并提供 384 的 AUC/MIC 比值,这应该可以预测治疗成功。通过共聚焦激光扫描显微镜(CLSM)监测生物膜,并确定活细胞和耐药突变体(4 倍和 16 倍 MIC)的数量。尽管优化了药代动力学/药效学(PK/PD)参数,但 CIP 治疗并不能抑制铜绿假单胞菌生物膜中的耐药性发展。两种菌株都选择了一步耐药突变体(MexCD-OprJ 或 MexEF-OprN 过表达),而只有突变体菌株容易选择两步耐药突变体(额外的 GyrA 或 GyrB 突变)。竞争实验的 CLSM 分析表明,即使在接种比例为 0.01 的情况下,PAOMS 在 CIP 处理仅两天后就接管了整个生物膜,在 t4 时比 PAO1 多 3 个对数级。我们的结果表明,突变机制在生物膜抗生素耐药性中起主要作用,并且理论上优化的 PK/PD 参数无法抑制耐药性发展,这表明特殊的生物膜生理学和结构驱动的抗生素耐受性增加可能会提高有效 MPC,有利于逐渐发生突变耐药性发展,尤其是在突变体菌株中。此外,首次在铜绿假单胞菌生物膜中现场证明了抗生素处理下突变体群体的共选择与耐药突变的扩增。