School of Physics Science and Technology, Central South University, Changsha, Hunan 410083, China.
J Chem Phys. 2011 Aug 21;135(7):074103. doi: 10.1063/1.3625919.
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established.
一种非硬球(HS)微扰方案,最近由本作者提出,对一些关键数学细节进行了阐述,这些细节是在耦合参数展开(CPE)热力学微扰框架中实施非 HS 微扰方案的关键。采用广义 Lennard-Jones(LJ)2n-n 势进行 NVT-蒙特卡罗模拟,以获得常规热力学量,如过剩内能、压力、过剩化学势、过剩亥姆霍兹自由能和过剩定容热容。然后,使用这些新的模拟数据以及文献中关于硬心吸引 Yukawa 流体和 Sutherland 流体的可用模拟数据,测试非 HS CPE 三阶热力学微扰理论(TPT),并将非 HS CPE 三阶 TPT 与其他理论方法进行比较。结果表明,非 HS CPE 三阶 TPT 优于其他传统 TPT,如范德华/HS(vdW/HS)、二阶微扰理论/HS(PT2/HS)和范德华/Yukawa(vdW/Y)理论,或平均球近似(MSA)-状态方程等分析方程状态理论,并且至少与几种目前最精确的 Ornstein-Zernike 积分方程理论相当。发现三个技术问题,即开放参考势的新桥函数逼近、选择合适的参考势、以及/或使用合适的热力学路径计算 f(ex-ref),主要决定了非 HS CPE TPT 的质量。考虑到非 HS 微扰方案适用于多种模型流体,并且在 CPE 热力学微扰框架中的实施易于进行高阶截断,一旦解决了上述三个技术问题,非 HS CPE 三阶或更高阶 TPT 将更有前途。