Suppr超能文献

一种整合了纤维、纤维束和连续体水平的血管组织本构模型,应用于肾下主动脉各向同性和被动特性。

A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta.

机构信息

Department of Solid Mechanics, School of Engineering Sciences, Royal Institute of Technology (KTH), Osquars Backe 1, SE-10044 Stockholm, Sweden.

出版信息

J Biomech. 2011 Sep 23;44(14):2544-50. doi: 10.1016/j.jbiomech.2011.07.015.

Abstract

A fundamental understanding of the mechanical properties of the extracellular matrix (ECM) is critically important to quantify the amount of macroscopic stress and/or strain transmitted to the cellular level of vascular tissue. Structural constitutive models integrate histological and mechanical information, and hence, allocate stress and strain to the different microstructural components of the vascular wall. The present work proposes a novel multi-scale structural constitutive model of passive vascular tissue, where collagen fibers are assembled by proteoglycan (PG) cross-linked collagen fibrils and reinforce an otherwise isotropic matrix material. Multiplicative kinematics account for the straightening and stretching of collagen fibrils, and an orientation density function captures the spatial organization of collagen fibers in the tissue. Mechanical and structural assumptions at the collagen fibril level define a piece-wise analytical stress-stretch response of collagen fibers, which in turn is integrated over the unit sphere to constitute the tissue's macroscopic mechanical properties. The proposed model displays the salient macroscopic features of vascular tissue, and employs the material and structural parameters of clear physical meaning. Likewise, the constitutive concept renders a highly efficient multi-scale structural approach that allows for the numerical analysis at the organ level. Model parameters were estimated from isotropic mean-population data of the normal and aneurysmatic aortic wall and used to predict in-vivo stress states of patient-specific vascular geometries, thought to demonstrate the robustness of the particular Finite Element (FE) implementation. The collagen fibril level of the multi-scale constitutive formulation provided an interface to integrate vascular wall biology and to account for collagen turnover.

摘要

对细胞外基质(ECM)的机械性能有一个基本的了解,对于量化传递到血管组织细胞水平的宏观应力和/或应变的数量至关重要。结构本构模型整合了组织学和力学信息,因此将应力和应变分配给血管壁的不同微观结构成分。本工作提出了一种新的被动血管组织多尺度结构本构模型,其中胶原蛋白纤维由蛋白聚糖(PG)交联的胶原原纤维组装而成,并增强了各向同性的基质材料。乘法运动学解释了胶原原纤维的变直和拉伸,而取向密度函数则捕获了组织中胶原纤维的空间组织。在胶原原纤维水平上的力学和结构假设定义了胶原纤维的分段分析的应力-应变响应,然后在单位球上积分以构成组织的宏观力学特性。所提出的模型显示了血管组织的显著宏观特征,并采用了具有明确物理意义的材料和结构参数。同样,本构概念提供了一种高效的多尺度结构方法,允许在器官水平进行数值分析。模型参数是从正常和动脉瘤主动脉壁的各向同性平均群体数据中估计出来的,并用于预测特定患者血管几何形状的体内应力状态,这被认为证明了特定有限元(FE)实现的稳健性。多尺度本构公式的胶原原纤维水平提供了一个界面,用于整合血管壁生物学并考虑胶原蛋白的转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验