School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2011 Sep;3(9):3545-51. doi: 10.1021/am200760m. Epub 2011 Sep 9.
The electrical properties of organic field-effect transistors (OFETs) are largely determined by the accumulation layer that extends only a few molecular layers away from the gate dielectric/organic semiconductor interface. To understand degradation processes that occur within the device structure under ambient conditions, it is thus essential to probe the interface using an architecture that minimizes the effects of bulk transport of contaminating species through upper layers of material in a thick film device. Using FETs designed with multiple voltage probes along the conducting channel and an ultrathin film of the active material, we found that the charge carrier density and the FET mobility decrease, and further, the contact and channel properties are strongly correlated. FET devices prepared with an ultrathin film of P3HT become significantly contact limited in air due to a hole diffusion barrier near the drain electrode. Encapsulation of the device with a layered organic/inorganic barrier material consisting of parylene and Al(2)O(3) appreciably retarded diffusion of molecular species from ambient air into P3HT.
有机场效应晶体管 (OFET) 的电学性能在很大程度上取决于积累层,该层仅从栅介质/有机半导体界面延伸几个分子层。为了了解在环境条件下器件结构中发生的降解过程,因此必须使用一种架构来探测界面,这种架构最小化了杂质通过厚膜器件中上层材料的体传输对器件的影响。使用在导电沟道上具有多个电压探针的 FET 和活性材料的超薄薄膜,我们发现载流子密度和 FET 迁移率降低,并且进一步的是,接触和沟道特性具有很强的相关性。由于在漏电极附近存在空穴扩散势垒,用 P3HT 的超薄薄膜制备的 FET 器件在空气中会显著受到接触限制。用由聚对二甲苯和 Al(2)O(3)组成的分层有机/无机阻挡材料对器件进行封装,可明显阻止来自环境空气的分子物种扩散到 P3HT 中。