Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA.
J Struct Biol. 2011 Nov;176(2):192-202. doi: 10.1016/j.jsb.2011.08.006. Epub 2011 Aug 17.
The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr.
胶须藻绿藻 Closterium moniliferum 属于少数能够形成重晶石 (BaSO4) 或天青石 (SrSO4) 生物矿物的生物体。在存在过量钙的情况下,能够将 Sr 固定的能力对于从环境和核废料中修复 (90)Sr 具有相当大的意义。虽然大多数细胞动态调节细胞质和各种细胞器中第二信使 Ca2+的浓度,但转运蛋白很少在 Ca、Sr 和 Ba 之间进行强烈区分。在此,我们研究了这些离子在 C. moniliferum 中的运输方式以及 (Ba,Sr)SO4 晶体如何在末端液泡中沉淀。为此,我们使用冷冻固定/冷冻干燥样品的 X 射线荧光显微镜 (XFM) 同时可视化多种元素的细胞内动态。我们将得到的元素图谱与从冷冻水合细胞的冷冻断裂 cryo-SEM 中获得的超微结构信息相关联,并使用微 X 射线吸收近边缘结构 (micro-XANES) 来确定硫的形态。我们发现 Sr 的摄取和流出动力学取决于外部 Ca 浓度,并且 Sr、Ba 和 Ca 显示出相似的细胞内定位。没有明显的高度离子选择性跨膜转运步骤。基于在末端液泡中检测到的硫酸盐水平升高,我们提出了“硫酸盐陷阱”模型,其中由于其相对于 SrSO4 和 CaSO4 的低溶解度,溶解的钡的存在导致 (Ba,Sr)SO4 的优先沉淀。因此,工程化液泡中的硫酸盐浓度可能是增加每个细胞中固定 Sr 的最直接方法,这对于利用胶须藻进行 (90)Sr 的植物修复是一个重要的考虑因素。