Suppr超能文献

Tak1 的组织特异性剪接在后口动物中是保守的。

Tissue-specific alternative splicing of Tak1 is conserved in deuterostomes.

机构信息

Institut de Génétique Moléculaire de Montpellier, UMR 5535, CNRS, Université Montpellier 2, Montpellier, France.

出版信息

Mol Biol Evol. 2012 Jan;29(1):261-9. doi: 10.1093/molbev/msr193. Epub 2011 Aug 27.

Abstract

Alternative splicing allows organisms to rapidly modulate protein functions to physiological changes and therefore represents a highly versatile adaptive process. We investigated the conservation of the evolutionary history of the "Fox" family of RNA-binding splicing factors (RBFOX) as well as the conservation of regulated alternative splicing of the genes they control. We found that the RBFOX proteins are conserved in all metazoans examined. In humans, Fox proteins control muscle-specific alternative splicing of many genes but despite the conservation of splicing factors, conservation of regulation of alternative splicing has never been demonstrated between man and nonvertebrate species. Therefore, we studied 40 known Fox-regulated human exons and found that 22 had a tissue-specific splicing pattern in muscle and heart. Of these, 11 were spliced in the same tissue-specific manner in mouse tissues and 4 were tissue-specifically spliced in muscle and heart of the frog Xenopus laevis. The inclusion of two of these alternative exons was also downregulated during tadpole development. Of the 40 in the starting set, the most conserved alternative splicing event was in the transforming growth factor (TGF) beta-activated kinase Tak1 (MAP3K7) as this was also muscle specific in urochordates and in Ambulacraria, the most ancient deuterostome clade. We found exclusion of the muscle-specific exon of Tak1 was itself under control of TGF beta in cell culture and consistently that TGF beta caused an upregulation of Fox2 (RBFOX2) expression. The alternative exon, which codes for an in-frame 27 amino acids between the kinase and known regulatory domain of TAK1, contains conserved features in all organisms including potential phosphorylation sites and likely has an important conserved function in TGF beta signaling and development. This study establishes that deuterostomes share a remarkable conserved physiological process that involves a splicing factor and expression of tissue-specific isoforms of a target gene that expedites a highly conserved signaling pathway.

摘要

可变剪接使生物体能够快速调节蛋白质功能以适应生理变化,因此代表了一种高度通用的适应过程。我们研究了 RNA 结合剪接因子(RBFOX)“Fox”家族的进化历史的保守性,以及它们控制的基因的调节性可变剪接的保守性。我们发现,RBFOX 蛋白在所有检查的后生动物中都是保守的。在人类中,Fox 蛋白控制许多基因的肌肉特异性可变剪接,但尽管剪接因子是保守的,但在人类和非脊椎动物物种之间从未证明过可变剪接的调节是保守的。因此,我们研究了 40 个已知的 Fox 调控的人类外显子,发现其中 22 个在外显子在肌肉和心脏中有组织特异性剪接模式。其中,有 11 个在外显子在小鼠组织中以相同的组织特异性方式剪接,有 4 个在外显子在青蛙 Xenopus laevis 的肌肉和心脏中具有组织特异性剪接。这两个外显子的剪接也在蝌蚪发育过程中下调。在起始集合的 40 个外显子中,最保守的可变剪接事件是转化生长因子(TGF)β激活激酶 Tak1(MAP3K7),因为这在外胚层和 ambulacraria 中也是肌肉特异性的,ambulacraria 是最古老的后口动物分支。我们发现 Tak1 的肌肉特异性外显子的排除本身受到 TGFβ在细胞培养中的控制,并且一致地,TGFβ导致 Fox2(RBFOX2)表达的上调。该外显子编码一个在激酶和已知的 TAK1 调节域之间的框内 27 个氨基酸,在所有生物体中都包含保守特征,包括潜在的磷酸化位点,并且可能在 TGFβ信号转导和发育中具有重要的保守功能。这项研究确立了后口动物共享一个显著保守的生理过程,该过程涉及剪接因子和靶基因的组织特异性同工型的表达,从而加速了高度保守的信号通路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验