Dept. of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, U.K.
Biotechnol Prog. 2011 Nov-Dec;27(6):1689-99. doi: 10.1002/btpr.692. Epub 2011 Aug 31.
In this study, we systematically compare two vector design strategies for recombinant monoclonal antibody (Mab) synthesis by Chinese hamster ovary (CHO) cells; a dual open reading frame (ORF) expression vector utilizing separate cytomegalovirus (CMV) promoters to drive heavy chain (HC) and light chain (LC) expression independently, and a single ORF vector design employing a single CMV promoter to drive HC and LC polypeptide expression joined by a foot and mouth disease virus F2A polypeptide self-cleaving linker sequence. Initial analysis of stable transfectants showed that transfectants utilizing the single ORF vector designs exhibited significantly reduced Mab production. We employed an empirical modeling strategy to quantitatively describe the cellular constraints on recombinant Mab synthesis in all stable transfectants. In all transfectants, an intracellular molar excess of LC polypeptide over HC polypeptide was observed. For CHO cells transfected with the single ORF vectors, model-predicted, and empirical intracellular intermediate levels could only be reconciled by inclusion of nascent HC polypeptide degradation. Whilst a local sensitivity analysis showed that qMab of all transfectants was primarily constrained by recombinant mRNA translation rate, our data indicated that all single ORF transfectants exhibited a reduced level of recombinant gene transcription and that Mab folding and assembly reactions generically exerted greater control over qMab. We infer that the productivity of single ORF transfectants is limited by ER processing/degradation "capacity" which sets a limit on transcriptional input. We conclude that gene vector design for oligomeric recombinant proteins should be based on an understanding of protein-specific synthetic kinetics rather than polypeptide stoichiometry.
在这项研究中,我们系统地比较了两种用于中国仓鼠卵巢(CHO)细胞中重组单克隆抗体(Mab)合成的载体设计策略;一种是利用两个独立的巨细胞病毒(CMV)启动子分别驱动重链(HC)和轻链(LC)表达的双开放阅读框(ORF)表达载体,另一种是利用单个 CMV 启动子驱动 HC 和 LC 多肽表达的单 ORF 载体设计,通过口蹄疫病毒 F2A 多肽自我切割连接序列连接。对稳定转染子的初步分析表明,利用单 ORF 载体设计的转染子表现出明显降低的 Mab 产量。我们采用经验模型策略来定量描述所有稳定转染子中重组 Mab 合成的细胞限制。在所有转染子中,观察到 LC 多肽与 HC 多肽的细胞内摩尔过量。对于用单 ORF 载体转染的 CHO 细胞,模型预测和经验细胞内中间水平只能通过包含新生 HC 多肽降解来协调。虽然局部敏感性分析表明,所有转染子的 qMab 主要受到重组 mRNA 翻译率的限制,但我们的数据表明,所有单 ORF 转染子都表现出较低水平的重组基因转录,并且 Mab 折叠和组装反应通常对 qMab 施加更大的控制。我们推断,单 ORF 转染子的生产力受到 ER 加工/降解“能力”的限制,这限制了转录输入。我们得出结论,用于寡聚重组蛋白的基因载体设计应该基于对蛋白质特定合成动力学的理解,而不是多肽化学计量学。