Suppr超能文献

基于结构的去甲肾上腺素转运体(NET)相互作用的处方药发现。

Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET.

机构信息

Department of Bioengineering and Therapeutic Sciences, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15810-5. doi: 10.1073/pnas.1106030108. Epub 2011 Sep 1.

Abstract

The norepinephrine transporter (NET) transports norepinephrine from the synapse into presynaptic neurons, where norepinephrine regulates signaling pathways associated with cardiovascular effects and behavioral traits via binding to various receptors (e.g., β2-adrenergic receptor). NET is a known target for a variety of prescription drugs, including antidepressants and psychostimulants, and may mediate off-target effects of other prescription drugs. Here, we identify prescription drugs that bind NET, using virtual ligand screening followed by experimental validation of predicted ligands. We began by constructing a comparative structural model of NET based on its alignment to the atomic structure of a prokaryotic NET homolog, the leucine transporter LeuT. The modeled binding site was validated by confirming that known NET ligands can be docked favorably compared to nonbinding molecules. We then computationally screened 6,436 drugs from the Kyoto Encyclopedia of Genes and Genomes (KEGG DRUG) against the NET model. Ten of the 18 high-scoring drugs tested experimentally were found to be NET inhibitors; five of these were chemically novel ligands of NET. These results may rationalize the efficacy of several sympathetic (tuaminoheptane) and antidepressant (tranylcypromine) drugs, as well as side effects of diabetes (phenformin) and Alzheimer's (talsaclidine) drugs. The observations highlight the utility of virtual screening against a comparative model, even when the target shares less than 30% sequence identity with its template structure and no known ligands in the primary binding site.

摘要

去甲肾上腺素转运体(NET)将去甲肾上腺素从突触中转运到突触前神经元,去甲肾上腺素通过与各种受体(例如β2-肾上腺素能受体)结合来调节与心血管效应和行为特征相关的信号通路。NET 是各种处方药物的已知靶点,包括抗抑郁药和精神兴奋剂,并且可能介导其他处方药物的非靶向效应。在这里,我们使用虚拟配体筛选,然后对预测配体进行实验验证,来鉴定与 NET 结合的处方药物。我们首先基于 NET 与原核 NET 同源物亮氨酸转运蛋白 LeuT 的氨基酸序列比对构建了 NET 的比较结构模型。通过确认已知的 NET 配体可以比非结合分子更有利地对接来验证建模的结合位点。然后,我们针对 NET 模型从京都基因与基因组百科全书(KEGG DRUG)计算筛选了 6436 种药物。在实验中测试的 18 种高分药物中有 10 种被发现是 NET 抑制剂;其中 5 种是 NET 的化学新颖配体。这些结果可能使几种交感神经(tuaminoheptane)和抗抑郁药(tranylcypromine)药物的疗效以及糖尿病(phenformin)和阿尔茨海默病(talsaclidine)药物的副作用合理化。这些观察结果突出了针对比较模型进行虚拟筛选的效用,即使在目标与模板结构的序列同一性小于 30%并且在主要结合位点中没有已知配体的情况下也是如此。

相似文献

1
Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15810-5. doi: 10.1073/pnas.1106030108. Epub 2011 Sep 1.
2
LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake.
Science. 2007 Sep 7;317(5843):1390-3. doi: 10.1126/science.1147614. Epub 2007 Aug 9.
3
High selectivity of the γ-aminobutyric acid transporter 2 (GAT-2, SLC6A13) revealed by structure-based approach.
J Biol Chem. 2012 Nov 2;287(45):37745-56. doi: 10.1074/jbc.M112.388157. Epub 2012 Aug 29.
4
Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter.
J Biol Chem. 2015 Oct 30;290(44):26725-38. doi: 10.1074/jbc.M115.677658. Epub 2015 Sep 11.
5
A second extracellular site is required for norepinephrine transport by the human norepinephrine transporter.
Mol Pharmacol. 2012 Nov;82(5):898-909. doi: 10.1124/mol.112.080630. Epub 2012 Aug 8.
6
chi-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model.
J Biol Chem. 2007 Jun 15;282(24):17837-44. doi: 10.1074/jbc.M610813200. Epub 2007 Apr 11.
7
Mechanism of chloride interaction with neurotransmitter:sodium symporters.
Nature. 2007 Oct 11;449(7163):726-30. doi: 10.1038/nature06133. Epub 2007 Aug 19.
8
Structure and localisation of drug binding sites on neurotransmitter transporters.
J Mol Model. 2009 Oct;15(10):1155-64. doi: 10.1007/s00894-009-0478-1. Epub 2009 Feb 24.
9
Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters.
Methods Enzymol. 2015;557:167-98. doi: 10.1016/bs.mie.2015.01.002. Epub 2015 Mar 24.
10
Coordination of Na(+) by monoamine ligands in dopamine, norepinephrine, and serotonin transporters.
J Chem Inf Model. 2008 Jul;48(7):1423-37. doi: 10.1021/ci700255d. Epub 2008 Jun 11.

引用本文的文献

1
Mapping cross-modal functional connectivity of major neurotransmitter systems in the human brain.
Brain Struct Funct. 2025 Aug 19;230(7):137. doi: 10.1007/s00429-025-02996-4.
2
Capturing Unanticipated Drug Toxicities Using an Ensemble Machine Learning Approach.
Res Sq. 2025 Jul 10:rs.3.rs-6999821. doi: 10.21203/rs.3.rs-6999821/v1.
4
Substrate binding and inhibition mechanism of norepinephrine transporter.
Nature. 2024 Sep;633(8029):473-479. doi: 10.1038/s41586-024-07810-5. Epub 2024 Aug 14.
6
Substrate binding and inhibition of the anion exchanger 1 transporter.
Nat Struct Mol Biol. 2023 Oct;30(10):1495-1504. doi: 10.1038/s41594-023-01085-6. Epub 2023 Sep 7.
7
Targeting SLC transporters: small molecules as modulators and therapeutic opportunities.
Trends Biochem Sci. 2023 Sep;48(9):801-814. doi: 10.1016/j.tibs.2023.05.011. Epub 2023 Jun 22.
8
The Alkylamine Stimulant 1,3-Dimethylamylamine Exhibits Substrate-Like Regulation of Dopamine Transporter Function and Localization.
J Pharmacol Exp Ther. 2023 Aug;386(2):266-273. doi: 10.1124/jpet.122.001573. Epub 2023 Jun 22.
9
Rationalizing the Binding Modes of PET Radiotracers Targeting the Norepinephrine Transporter.
Pharmaceutics. 2023 Feb 17;15(2):690. doi: 10.3390/pharmaceutics15020690.
10
Describing inhibitor specificity for the amino acid transporter LAT1 from metainference simulations.
Biophys J. 2022 Dec 6;121(23):4476-4491. doi: 10.1016/j.bpj.2022.11.001. Epub 2022 Nov 11.

本文引用的文献

1
Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site.
Nature. 2010 Dec 23;468(7327):1129-32. doi: 10.1038/nature09581.
2
ModBase, a database of annotated comparative protein structure models, and associated resources.
Nucleic Acids Res. 2011 Jan;39(Database issue):D465-74. doi: 10.1093/nar/gkq1091. Epub 2010 Nov 19.
3
Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury.
Biochim Biophys Acta. 2011 Jul;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010. Epub 2010 Sep 24.
4
Structure of a cation-bound multidrug and toxic compound extrusion transporter.
Nature. 2010 Oct 21;467(7318):991-4. doi: 10.1038/nature09408. Epub 2010 Sep 22.
5
Substrate and drug binding sites in LeuT.
Curr Opin Struct Biol. 2010 Aug;20(4):415-22. doi: 10.1016/j.sbi.2010.05.007. Epub 2010 Jun 16.
6
Rapid context-dependent ligand desolvation in molecular docking.
J Chem Inf Model. 2010 Sep 27;50(9):1561-73. doi: 10.1021/ci100214a.
8
Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters.
Nat Struct Mol Biol. 2010 Jul;17(7):822-9. doi: 10.1038/nsmb.1854. Epub 2010 Jun 20.
9
Single-molecule dynamics of gating in a neurotransmitter transporter homologue.
Nature. 2010 May 13;465(7295):188-93. doi: 10.1038/nature09057.
10
Membrane transporters in drug development.
Nat Rev Drug Discov. 2010 Mar;9(3):215-36. doi: 10.1038/nrd3028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验