Suppr超能文献

一种用于处理纵向数据中零膨胀和数据不完整问题的两部分混合效应模式混合模型。

A two-part mixed-effects pattern-mixture model to handle zero-inflation and incompleteness in a longitudinal setting.

作者信息

Maruotti Antonello

机构信息

Dipartimento di Istituzioni Pubbliche, Economia e Società, Università di Roma Tre, Roma, Italy.

出版信息

Biom J. 2011 Sep;53(5):716-34. doi: 10.1002/bimj.201000190. Epub 2011 Aug 24.

Abstract

Two-part regression models are frequently used to analyze longitudinal count data with excess zeros, where the same set of subjects is repeatedly observed over time. In this context, several sources of heterogeneity may arise at individual level that affect the observed process. Further, longitudinal studies often suffer from missing values: individuals dropout of the study before its completion, and thus present incomplete data records. In this paper, we propose a finite mixture of hurdle models to face the heterogeneity problem, which is handled by introducing random effects with a discrete distribution; a pattern-mixture approach is specified to deal with non-ignorable missing values. This approach helps us to consider overdispersed counts, while allowing for association between the two parts of the model, and for non-ignorable dropouts. The effectiveness of the proposal is tested through a simulation study. Finally, an application to real data on skin cancer is provided.

摘要

两部分回归模型经常用于分析具有过多零值的纵向计数数据,其中同一组受试者会随着时间被重复观测。在此背景下,个体层面可能会出现几种异质性来源,它们会影响观测过程。此外,纵向研究经常存在缺失值问题:个体在研究完成前退出,从而呈现不完整的数据记录。在本文中,我们提出一种有限混合障碍模型来应对异质性问题,该问题通过引入具有离散分布的随机效应来处理;指定一种模式混合方法来处理不可忽略的缺失值。这种方法有助于我们考虑过度分散的计数,同时允许模型的两部分之间存在关联以及不可忽略的失访情况。通过模拟研究检验了该提议的有效性。最后,给出了一个关于皮肤癌真实数据的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验