School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF, England, UK.
Chemosphere. 2011 Oct;85(6):1066-74. doi: 10.1016/j.chemosphere.2011.07.037. Epub 2011 Sep 3.
A computational model to predict acute aquatic toxicity to the ciliate Tetrahymena pyriformis has been developed. A general prediction of toxicity can be based on three consecutive steps: 1. Identification of a potential reactive mechanism via structural alerts; 2. Confirmation and quantification of (bio)chemical reactivity; 3. Establishing a relationship between calculated reactivity and toxicity. The method described herein uses a combination of a reactive toxicity (RT) model, including computed kinetic rate constants for adduct formation (log k) via a Michael acceptor mechanism of action, and baseline toxicity (BT), modelled by hydrophobicity (octanol-water partition coefficient). The maximum of the RT and BT values defines acute toxicity for a particular compound. The reactive toxicity model is based on site-specific steric and quantum chemical ground state electronic properties. The performance of the model was examined in terms of predicting the toxicity of 106 potential Michael acceptor compounds covering several classes of compounds (aldehydes, ketones, esters, heterocycles). The advantages of the computational method are described. The method allows for a closer and more transparent mechanistic insight into the molecular initiating events of toxicological endpoints.
已经开发出一种用于预测对纤毛虫四膜虫急性水生毒性的计算模型。基于三个连续步骤可以进行一般毒性预测:1. 通过结构警示识别潜在的反应机制;2. 确认和量化(生物)化学反应性;3. 在计算出的反应性和毒性之间建立关系。本文所述的方法结合了反应性毒性 (RT) 模型,包括通过作用机制的迈克尔受体计算的加合物形成的动力学速率常数 (log k),以及通过疏水性 (辛醇-水分配系数) 建模的基线毒性 (BT)。RT 和 BT 值的最大值定义了特定化合物的急性毒性。反应性毒性模型基于特定于位点的空间位阻和量子化学基态电子特性。根据毒性的预测来检查模型的性能 106 种潜在的迈克尔受体化合物,涵盖了几类化合物(醛、酮、酯、杂环)。描述了计算方法的优点。该方法可以更密切、更透明地了解毒理学终点的分子引发事件的机制。