State Key Laboratory of Physical Chemistry of Solid Surfaces & College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Chem Soc Rev. 2012 Jan 21;41(2):703-37. doi: 10.1039/c1cs15136c. Epub 2011 Sep 2.
The occurrence of spin-crossover (SCO) highly depends on external influences, i.e. temperature, pressure, light irradiation or magnetic field, this electronic switching phenomenon is accompanied by drastic changes in magnetic and optical properties, dielectric constants, colour and structures. Thus, SCO materials are particularly attractive for potential applications in molecular sensing, switching, data storage, display, and other electronic devices at nanometric scale. Polymorphism is widely encountered in the studies of crystallization, phase transition, materials synthesis, biomineralization, and in the manufacture of drugs. Because different crystal forms of the same substance can possess very different properties and behave as different materials, so they are particularly meaningful for investigating SCO phenomena. Studying polymorphism of SCO compounds is therefore important for better understanding the structural factors contributing to spin transition and the structure-function relationship. This critical review is aimed to provide general readers with a comprehensive view of polymorphism in SCO systems. The article is generally structured according to specific metal ions and the dimensionality of compounds in the field. This paper is addressed to readers who are interested in multifunctional materials and tuning magnetic properties through supramolecular chemistry principles (129 references).
自旋交叉(SCO)的发生高度依赖于外部影响,例如温度、压力、光辐照或磁场,这种电子开关现象伴随着磁学和光学性质、介电常数、颜色和结构的剧烈变化。因此,SCO 材料在分子传感、开关、数据存储、显示和其他纳米级电子设备中的潜在应用具有特别的吸引力。多晶型现象在结晶、相变、材料合成、生物矿化以及药物制造等领域的研究中广泛存在。由于同一种物质的不同晶体形式可能具有非常不同的性质,并表现为不同的材料,因此它们对于研究 SCO 现象特别有意义。研究 SCO 化合物的多晶型现象对于更好地理解导致自旋转变的结构因素以及结构-功能关系非常重要。这篇评论文章旨在为普通读者提供 SCO 系统多晶型现象的全面概述。文章通常根据特定的金属离子和化合物的维度进行组织。本文针对对多功能材料和通过超分子化学原理调节磁学性质感兴趣的读者(129 篇参考文献)。