Dreesman Johannes, Denecke Kerstin
Niedersächsisches Landesgesundheitsamt, Hannover, Germany.
Stud Health Technol Inform. 2011;169:639-43.
Early detection of disease outbreaks is crucial for public health officials to react and report in time. Currently, novel approaches and sources of information are investigated to address this challenge. For example, data sources such as blogs or Twitter messages become increasingly important for epidemiologic surveillance. In traditional surveillance, statistical methods are used to interpret reported number of cases or other indicators to potential disease outbreaks. For analyzing data collected from other data sources, in particular for data extracted from unstructured text, it is still unclear whether these methods can be applied. This paper surveys existing methods for interpreting data for signal generation in public health. In particular, problems to be addressed when applying them to social media data will be summarized and future steps will be highlighted.
疾病暴发的早期检测对于公共卫生官员及时做出反应和报告至关重要。目前,人们正在研究新的方法和信息来源以应对这一挑战。例如,博客或推特消息等数据来源在流行病学监测中变得越来越重要。在传统监测中,统计方法用于解释报告的病例数或其他指标以发现潜在的疾病暴发。对于分析从其他数据源收集的数据,特别是从非结构化文本中提取的数据,这些方法是否适用仍不明确。本文调查了公共卫生领域中用于解释数据以生成信号的现有方法。特别是,将总结将这些方法应用于社交媒体数据时需要解决的问题,并突出未来的步骤。