Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0238, USA.
J Acoust Soc Am. 2011 Sep;130(3):1242-52. doi: 10.1121/1.3613709.
Wave-theoretic ocean acoustic propagation modeling is used to derive the sensitivity of pressure, and complex demodulated amplitude and phase, at a receiver to the sound speed of the medium using the Born-Fréchet derivative. Although the procedure can be applied for pressure as a function of frequency instead of time, the time domain has advantages in practical problems, as linearity and signal-to-noise are more easily assigned in the time domain. The linearity and information content of these sensitivity kernels is explored for an example of a 3-4 kHz broadband pulse transmission in a 1 km shallow water Pekeris waveguide. Full-wave observations (pressure as a function of time) are seen to be too nonlinear for use in most practical cases, whereas envelope and phase data have a wider range of validity and provide complementary information. These results are used in simulated inversions with a more realistic sound speed profile, comparing the performance of amplitude and phase observations.
波动理论海洋声学传播建模用于通过使用 Born-Fréchet 导数从接收器处的压力以及复解调幅度和相位灵敏度导出介质声速。尽管该过程可以应用于频率而不是时间的压力函数,但是在实际问题中,时域具有优势,因为在线性和信噪比方面更容易在时域中分配。对于在 1 公里浅水 Pekeris 波导中传播的 3-4 kHz 宽带脉冲的示例,探索了这些灵敏度核的线性和信息量。全波观测(随时间变化的压力)对于大多数实际情况来说过于非线性,而包络和相位数据具有更广泛的有效性范围,并提供互补信息。这些结果用于具有更现实声速分布的模拟反演中,比较幅度和相位观测的性能。