Suppr超能文献

缺氧诱导因子-1α 基因沉默减轻血管紧张素Ⅱ诱导的 Sprague-Dawley 大鼠肾损伤。

Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats.

机构信息

Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.

出版信息

Hypertension. 2011 Oct;58(4):657-64. doi: 10.1161/HYPERTENSIONAHA.111.177626. Epub 2011 Sep 6.

Abstract

Although it has been shown that upregulation of hypoxia-inducible factor (HIF)-1α is protective in acute ischemic renal injury, long-term overactivation of HIF-1α is implicated to be injurious in chronic kidney diseases. Angiotensin II (Ang II) is a well-known pathogenic factor producing chronic renal injury and has also been shown to increase HIF-1α. However, the contribution of HIF-1α to Ang II-induced renal injury has not been evidenced. The present study tested the hypothesis that HIF-1α mediates Ang II-induced renal injury in Sprague-Dawley rats. Chronic renal injury was induced by Ang II infusion (200 ng/kg per minute) for 2 weeks in uninephrectomized rats. Transfection of vectors expressing HIF-1α small hairpin RNA into the kidneys knocked down HIF-1α gene expression by 70%, blocked Ang II-induced HIF-1α activation, and significantly attenuated Ang II-induced albuminuria, which was accompanied by inhibition of Ang II-induced vascular endothelial growth factor, a known glomerular permeability factor, in glomeruli. HIF-1α small hairpin RNA also significantly improved the glomerular morphological damage induced by Ang II. Furthermore, HIF-1α small hairpin RNA blocked Ang II-induced upregulation of collagen and α-smooth muscle actin in tubulointerstitial region. There was no difference in creatinine clearance and Ang II-induced increase in blood pressure. HIF-1α small hairpin RNA had no effect on Ang II-induced reduction in renal blood flow and hypoxia in the kidneys. These data suggested that overactivation of HIF-1α-mediated gene regulation in the kidney is a pathogenic pathway mediating Ang II-induced chronic renal injuries, and normalization of overactivated HIF-1α may be used as a treatment strategy for chronic kidney damages associated with excessive Ang II.

摘要

虽然已经表明缺氧诱导因子 (HIF)-1α 的上调在急性缺血性肾损伤中具有保护作用,但长期过度激活 HIF-1α 被认为在慢性肾脏病中是有害的。血管紧张素 II (Ang II) 是一种众所周知的产生慢性肾损伤的致病因子,也已被证明会增加 HIF-1α。然而,HIF-1α 对 Ang II 诱导的肾损伤的贡献尚未得到证实。本研究检验了以下假设:HIF-1α 介导 Ang II 诱导的 Sprague-Dawley 大鼠肾损伤。在单侧肾切除大鼠中,用 Ang II 输注(200 ng/kg/min)诱导慢性肾损伤 2 周。将表达 HIF-1α 短发夹 RNA 的载体转染到肾脏中,使 HIF-1α 基因表达降低 70%,阻断了 Ang II 诱导的 HIF-1α 激活,并显著减轻了 Ang II 诱导的白蛋白尿,同时抑制了血管内皮生长因子(一种已知的肾小球通透性因子)在肾小球中的表达。HIF-1α 短发夹 RNA 还显著改善了 Ang II 诱导的肾小球形态损伤。此外,HIF-1α 短发夹 RNA 阻断了 Ang II 诱导的肾小管间质区域胶原和α-平滑肌肌动蛋白的上调。肌酐清除率和 Ang II 诱导的血压升高没有差异。HIF-1α 短发夹 RNA 对 Ang II 诱导的肾血流量减少和肾脏缺氧没有影响。这些数据表明,肾脏中 HIF-1α 介导的基因调控过度激活是介导 Ang II 诱导的慢性肾损伤的发病途径,正常化过度激活的 HIF-1α 可能可用于治疗与过量 Ang II 相关的慢性肾脏损害。

相似文献

1
Silencing of hypoxia-inducible factor-1α gene attenuated angiotensin II-induced renal injury in Sprague-Dawley rats.
Hypertension. 2011 Oct;58(4):657-64. doi: 10.1161/HYPERTENSIONAHA.111.177626. Epub 2011 Sep 6.
2
Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats.
Am J Physiol Renal Physiol. 2014 May 15;306(10):F1236-42. doi: 10.1152/ajprenal.00673.2013. Epub 2014 Mar 12.
3
Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease.
Hypertension. 2015 Jul;66(1):75-84. doi: 10.1161/HYPERTENSIONAHA.115.05578. Epub 2015 May 18.
4
HIF-1α contributes to Ang II-induced inflammatory cytokine production in podocytes.
BMC Pharmacol Toxicol. 2019 Oct 17;20(1):59. doi: 10.1186/s40360-019-0340-8.
7
Silencing of hypoxia inducible factor-1α gene attenuated angiotensin Ⅱ-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice.
Atherosclerosis. 2016 Sep;252:40-49. doi: 10.1016/j.atherosclerosis.2016.07.010. Epub 2016 Jul 29.
8
Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats.
Am J Hypertens. 2014 Jan;27(1):107-13. doi: 10.1093/ajh/hpt207. Epub 2013 Nov 4.
9
Endothelial prolyl hydroxylase 2 is necessary for angiotensin II-mediated renal fibrosis and injury.
Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F345-F357. doi: 10.1152/ajprenal.00032.2020. Epub 2020 Jul 27.
10
Hypoxia-inducible factor prolyl-hydroxylase 2 senses high-salt intake to increase hypoxia inducible factor 1alpha levels in the renal medulla.
Hypertension. 2010 May;55(5):1129-36. doi: 10.1161/HYPERTENSIONAHA.109.145896. Epub 2010 Mar 22.

引用本文的文献

1
The gut-kidney axis in high-altitude hypoxia: pathophysiological mechanisms and the central role of hypoxia inducible factor.
Ann Med. 2025 Dec;57(1):2557514. doi: 10.1080/07853890.2025.2557514. Epub 2025 Sep 12.
2
The intelligent podocyte: sensing and responding to a complex microenvironment.
Nat Rev Nephrol. 2025 May 8. doi: 10.1038/s41581-025-00965-y.
3
Research progress of hypoxia-inducible factor-1α and zinc in the mechanism of diabetic kidney disease.
Front Pharmacol. 2025 Feb 10;16:1537749. doi: 10.3389/fphar.2025.1537749. eCollection 2025.
4
HIF-1α participates in the regulation of S100A16-HRD1-GSK3β/CK1α pathway in renal hypoxia injury.
Cell Death Dis. 2024 May 6;15(5):316. doi: 10.1038/s41419-024-06696-5.
5
HIF-1 contributes to autophagy activation via BNIP3 to facilitate renal fibrosis in hypoxia in vitro and UUO in vivo.
Am J Physiol Cell Physiol. 2024 Mar 1;326(3):C935-C947. doi: 10.1152/ajpcell.00458.2023. Epub 2024 Jan 29.
6
Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates.
Cureus. 2023 Oct 9;15(10):e46737. doi: 10.7759/cureus.46737. eCollection 2023 Oct.
7
The impact of hypoxia-inducible factors in the pathogenesis of kidney diseases: a link through cell metabolism.
Kidney Res Clin Pract. 2023 Sep;42(5):561-578. doi: 10.23876/j.krcp.23.012. Epub 2023 Jun 15.
10
Chronic constant light exposure aggravates high fat diet-induced renal injury in rats.
Front Endocrinol (Lausanne). 2022 Jul 29;13:900392. doi: 10.3389/fendo.2022.900392. eCollection 2022.

本文引用的文献

1
Melatonin differentially affects vascular blood flow in humans.
Am J Physiol Heart Circ Physiol. 2011 Feb;300(2):H670-4. doi: 10.1152/ajpheart.00710.2010. Epub 2010 Dec 10.
3
Pathophysiological Consequences of HIF Activation: HIF as a modulator of fibrosis.
Ann N Y Acad Sci. 2009 Oct;1177:57-65. doi: 10.1111/j.1749-6632.2009.05030.x.
4
Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney.
Nephrol Dial Transplant. 2010 Jan;25(1):77-85. doi: 10.1093/ndt/gfp454. Epub 2009 Sep 8.
5
Azelnidipine exerts renoprotective effects by improvement of renal microcirculation in angiotensin II infusion rats.
Nephrol Dial Transplant. 2009 Dec;24(12):3651-8. doi: 10.1093/ndt/gfp407. Epub 2009 Aug 7.
6
Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors.
Biochem Biophys Res Commun. 2009 Jul 10;384(4):519-23. doi: 10.1016/j.bbrc.2009.05.016. Epub 2009 May 8.
7
Novel use of ultrasound to examine regional blood flow in the mouse kidney.
Am J Physiol Renal Physiol. 2009 Jul;297(1):F228-35. doi: 10.1152/ajprenal.00016.2009. Epub 2009 May 6.
8
Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney.
Kidney Int. 2009 Jul;76(1):32-43. doi: 10.1038/ki.2009.90. Epub 2009 Apr 8.
9
Contribution of guanine nucleotide exchange factor Vav2 to hyperhomocysteinemic glomerulosclerosis in rats.
Hypertension. 2009 Jan;53(1):90-6. doi: 10.1161/HYPERTENSIONAHA.108.115675. Epub 2008 Nov 24.
10
Different roles for TGF-beta and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy.
Diabetes Res Clin Pract. 2008 Nov 13;82 Suppl 1:S38-41. doi: 10.1016/j.diabres.2008.09.016. Epub 2008 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验