Suppr超能文献

基于膦碳阴离子辅助配体的高效蓝色铱(III)配合物:DFT 研究。

Efficient blue-emitting Ir(III) complexes with phosphine carbanion-based ancillary ligand: a DFT study.

机构信息

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China.

出版信息

J Phys Chem A. 2011 Oct 27;115(42):11689-95. doi: 10.1021/jp200878y. Epub 2011 Sep 22.

Abstract

We report a theoretical study on a series of heteroleptic cyclometalated Ir(III) complexes for OLED application. The geometries, electronic structures, and the lowest-lying singlet absorptions and triplet emissions of [(fppy)(2)Ir(III)(PPh(2)Np)] (1), and theoretically designed models [(fppy)(2)Ir(III)(PH(2)Np)] (2) and (fppy)(2)Ir(III)Np(3) were investigated with density functional theory (DFT)-based approaches, where, fppyH = 4-fluorophenyl-pyridine and NpH = naphthalene. The ground and excited states were, respectively, optimized at the M062X/LanL2DZ;6-31G* and CIS/LanL2DZ:6-31G* level of theory within CH(2)Cl(2) solution provided by PCM. The lowest absorptions and emissions were evaluated at M062X/Stuttgart;cc-pVTZ;cc-pVDZ level of theory. Though the lowest absorptions and emissions were all attributed as the ligand-based charge-transfer transition with slight metal-to-ligand charge-transfer transition character, the subtle differences in geometries and electronic structures result in the different quantum yields and versatile emission color. The newly designed molecular 3 is expected to be highly emissive in deep blue region.

摘要

我们报告了一系列杂环金属铱(III)配合物用于 OLED 应用的理论研究。通过基于密度泛函理论(DFT)的方法,研究了[(fppy)(2)Ir(III)(PPh(2)Np)] (1)、理论设计的模型[(fppy)(2)Ir(III)(PH(2)Np)] (2)和(fppy)(2)Ir(III)Np (3)的几何形状、电子结构以及最低单线态吸收和三重态发射。其中,fppyH = 4-氟苯基吡啶,NpH = 萘。在 CH(2)Cl(2)溶液中,分别在 M062X/LanL2DZ;6-31G和 CIS/LanL2DZ:6-31G理论水平上优化了基态和激发态,由 PCM 提供。最低吸收和发射分别在 M062X/Stuttgart;cc-pVTZ;cc-pVDZ 理论水平上进行评估。尽管最低吸收和发射都归因于配体到金属的电荷转移跃迁,带有轻微的金属到配体电荷转移跃迁特性,但几何形状和电子结构的细微差异导致了不同的量子产率和多种发射颜色。新设计的分子 3 预计在深蓝色区域具有很高的发光效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验