Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK.
Protein Cell. 2011 Aug;2(8):656-71. doi: 10.1007/s13238-011-1082-6. Epub 2011 Sep 9.
Fatty acid binding and oxidation kinetics for wild type P450(BM3) (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50 mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than k (cat). The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450(BM3) could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration.
脂肪酸结合和氧化动力学的野生型 P450(BM3)(CYP102A1)从巨大芽孢杆菌已被发现显示链长依赖性同型行为。月桂酸和 13-甲基-豆蔻酸显示米氏动力学,而在低离子强度下豆蔻酸略有偏差。棕榈酸在 100mmol/L 磷酸盐,pH7.4 中显示米氏动力学和双曲线结合行为,但在低离子强度缓冲液和生理磷酸盐浓度下显示 S 型动力学(具有明显的截距)。在低离子强度缓冲液中,血红素结构域和全长酶都显示出复杂的棕榈酸结合行为,表明至少有四个脂肪酸结合位点,第四个棕榈酸分子的结合具有高协同性,全长酶比血红素结构域具有更紧密的棕榈酸结合。在 100mmol/L 磷酸盐中,月桂酸、豆蔻酸和棕榈酸的第一黄素到血红素电子转移比在 50mmol/L Tris(pH7.4)中更快,但每个底物都诱导相似的高自旋血红素含量。对于低磷酸盐缓冲液浓度下的棕榈酸,第一个电子转移的速率常数远大于 k(cat)。结果表明,磷酸盐具有促进第一个电子转移步骤的特定作用,并且 P450(BM3)可以通过棕榈酸氧化来调节芽孢杆菌的膜形态和流动性,以响应外部磷酸盐浓度。