Suppr超能文献

一种用于三维数字减影血管造影数据的二维驱动三维血管分割算法。

A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

机构信息

Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Phys Med Biol. 2011 Oct 7;56(19):6401-19. doi: 10.1088/0031-9155/56/19/015. Epub 2011 Sep 9.

Abstract

Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

摘要

脑血管疾病是西方工业国家的主要死亡原因之一。3D 旋转血管造影提供了关于血管形态和病理学的不可或缺的信息。医生利用这些信息来详细分析血管的几何形状,例如血管直径、动脉瘤的位置和大小,以便做出临床决策。3D 分割是该流程中的关键步骤。尽管现在有很多不同的方法,但它们都缺乏一种针对个体患者验证结果的方法。因此,我们提出了一种新颖的 2D 数字减影血管造影(DSA)驱动的 3D 血管分割和验证框架。2D DSA 投影在测量血管直径或动脉瘤颈部大小方面被临床认为是金标准。应用椭圆血管模型提供初始 3D 分割。为了评估 3D 血管分割的准确性,其正向投影会与相应的 2D DSA 投影进行迭代叠加。通过全局 2D/3D 优化函数来模拟局部血管差异,以调整 3D 血管分割以适应 2D 血管轮廓。我们的框架已经在体模数据和十个患者数据集上进行了评估。每个数据集都使用了三个来自不同观察角度的 2D DSA 投影。与像区域增长这样的最新分割方法相比,新颖的 2D 驱动的 3D 血管分割方法显示出优越的结果,例如在精度方面提高了 7.2%,在 Dice 系数方面提高了 5.8%。这种方法为需要最大血管准确性的未来临床应用开辟了道路,例如计算流体动力学建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验