Coleman Memorial Laboratory and W. M. Keck Foundation Center for Integrative Neuroscience, Department of Otolaryngology, University of California, San Francisco, California 94143, USA.
J Neurosci. 2011 Sep 14;31(37):13333-42. doi: 10.1523/JNEUROSCI.1000-11.2011.
Inhibitory interneurons constitute ∼20% of auditory cortical cells and are essential for shaping sensory processing. Connectivity patterns of interneurons in relation to functional organization principles are not well understood. We contrasted the connection patterns of parvalbumin-immunoreactive cells in two functionally distinct cortical regions: the tonotopic, narrowly frequency-tuned module [central narrow band (cNB)] of cat central primary auditory cortex (AI) and the nontonotopic, broadly tuned second auditory field (AII). Interneuronal connectivity patterns and laminar distribution were identified by combining a retrograde tracer (wheat-germ agglutinin apo-horseradish peroxidase colloidal gold) with labeling of the Ca(2+) binding protein parvalbumin (Pv), a marker for the GABAergic interneurons usually described physiologically as fast-spiking neurons. In AI, parvalbumin-positive (Pv+) cells constituted 13% of the retrograde labeled cells in the immediate vicinity of the injection site, compared to 10% in AII. The retrograde labeling of Pv+ cells along isofrequency countours was confined to the cNB. The spatial spread of labeled excitatory neurons in AI was more than twice that found for Pv+ cells. By contrast, in the AII, the spread of Pv+ cells was nearly equal to that of excitatory neurons. The retrograde labeling of Pv+ cells was anisotropic in AI and isotropic in AII. This demonstration of inhibitory networks in auditory cortex reveals that the connections of cat GABAergic AI and AII cells follow different anatomical plans and thus contribute differently to the shaping of neural response properties. The finding that local connectivity of parvalbumin-immunoreactive neurons in AI is closely aligned with spectral integration properties demonstrates the critical role of inhibition in creating distinct processing modules in AI.
抑制性中间神经元构成听觉皮层细胞的约 20%,对于塑造感觉处理至关重要。中间神经元的连接模式与功能组织原则的关系还不太清楚。我们对比了两种功能上不同的皮层区域的钙结合蛋白 parvalbumin(PV)免疫反应性细胞的连接模式:猫中央初级听觉皮层(AI)的音调调谐、狭窄频率调谐模块[中央窄带(cNB)]和非音调调谐、广泛调谐的第二听觉区(AII)。通过将逆行示踪剂(麦胚凝集素抗辣根过氧化物酶胶体金)与钙结合蛋白 parvalbumin(PV)的标记结合,确定了中间神经元的连接模式和层分布,PV 是 GABA 能中间神经元的标志物,通常在生理上描述为快速放电神经元。在 AI 中,与注射部位附近的 10%相比,逆行标记的 PV+细胞在 AI 中构成了逆行标记细胞的 13%。逆行标记的 PV+细胞沿着等频线的分布仅限于 cNB。AI 中标记兴奋性神经元的空间扩散是 PV+细胞的两倍多。相比之下,在 AII 中,PV+细胞的扩散几乎与兴奋性神经元相等。AI 中的逆行标记的 PV+细胞的扩散是各向异性的,而在 AII 中是各向同性的。这一在听觉皮层中抑制性网络的证明表明,猫 GABAergic AI 和 AII 细胞的连接遵循不同的解剖计划,因此对神经反应特性的塑造有不同的贡献。在 AI 中,PV 免疫反应性神经元的局部连接与谱整合特性密切一致,这一发现证明了抑制在 AI 中创建独特处理模块的关键作用。