Suppr超能文献

猫听觉皮层中钙结合蛋白免疫反应神经元的功能网络。

Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex.

机构信息

Coleman Memorial Laboratory and W. M. Keck Foundation Center for Integrative Neuroscience, Department of Otolaryngology, University of California, San Francisco, California 94143, USA.

出版信息

J Neurosci. 2011 Sep 14;31(37):13333-42. doi: 10.1523/JNEUROSCI.1000-11.2011.

Abstract

Inhibitory interneurons constitute ∼20% of auditory cortical cells and are essential for shaping sensory processing. Connectivity patterns of interneurons in relation to functional organization principles are not well understood. We contrasted the connection patterns of parvalbumin-immunoreactive cells in two functionally distinct cortical regions: the tonotopic, narrowly frequency-tuned module [central narrow band (cNB)] of cat central primary auditory cortex (AI) and the nontonotopic, broadly tuned second auditory field (AII). Interneuronal connectivity patterns and laminar distribution were identified by combining a retrograde tracer (wheat-germ agglutinin apo-horseradish peroxidase colloidal gold) with labeling of the Ca(2+) binding protein parvalbumin (Pv), a marker for the GABAergic interneurons usually described physiologically as fast-spiking neurons. In AI, parvalbumin-positive (Pv+) cells constituted 13% of the retrograde labeled cells in the immediate vicinity of the injection site, compared to 10% in AII. The retrograde labeling of Pv+ cells along isofrequency countours was confined to the cNB. The spatial spread of labeled excitatory neurons in AI was more than twice that found for Pv+ cells. By contrast, in the AII, the spread of Pv+ cells was nearly equal to that of excitatory neurons. The retrograde labeling of Pv+ cells was anisotropic in AI and isotropic in AII. This demonstration of inhibitory networks in auditory cortex reveals that the connections of cat GABAergic AI and AII cells follow different anatomical plans and thus contribute differently to the shaping of neural response properties. The finding that local connectivity of parvalbumin-immunoreactive neurons in AI is closely aligned with spectral integration properties demonstrates the critical role of inhibition in creating distinct processing modules in AI.

摘要

抑制性中间神经元构成听觉皮层细胞的约 20%,对于塑造感觉处理至关重要。中间神经元的连接模式与功能组织原则的关系还不太清楚。我们对比了两种功能上不同的皮层区域的钙结合蛋白 parvalbumin(PV)免疫反应性细胞的连接模式:猫中央初级听觉皮层(AI)的音调调谐、狭窄频率调谐模块[中央窄带(cNB)]和非音调调谐、广泛调谐的第二听觉区(AII)。通过将逆行示踪剂(麦胚凝集素抗辣根过氧化物酶胶体金)与钙结合蛋白 parvalbumin(PV)的标记结合,确定了中间神经元的连接模式和层分布,PV 是 GABA 能中间神经元的标志物,通常在生理上描述为快速放电神经元。在 AI 中,与注射部位附近的 10%相比,逆行标记的 PV+细胞在 AI 中构成了逆行标记细胞的 13%。逆行标记的 PV+细胞沿着等频线的分布仅限于 cNB。AI 中标记兴奋性神经元的空间扩散是 PV+细胞的两倍多。相比之下,在 AII 中,PV+细胞的扩散几乎与兴奋性神经元相等。AI 中的逆行标记的 PV+细胞的扩散是各向异性的,而在 AII 中是各向同性的。这一在听觉皮层中抑制性网络的证明表明,猫 GABAergic AI 和 AII 细胞的连接遵循不同的解剖计划,因此对神经反应特性的塑造有不同的贡献。在 AI 中,PV 免疫反应性神经元的局部连接与谱整合特性密切一致,这一发现证明了抑制在 AI 中创建独特处理模块的关键作用。

相似文献

1
Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex.
J Neurosci. 2011 Sep 14;31(37):13333-42. doi: 10.1523/JNEUROSCI.1000-11.2011.
3
Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency.
J Neurosci. 2013 Aug 21;33(34):13713-23. doi: 10.1523/JNEUROSCI.0663-13.2013.
4
Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex.
Hear Res. 2011 Apr;274(1-2):121-8. doi: 10.1016/j.heares.2010.06.014. Epub 2010 Jun 25.
5
Basic functional organization of second auditory cortical field (AII) of the cat.
J Neurophysiol. 1984 Jun;51(6):1284-305. doi: 10.1152/jn.1984.51.6.1284.
9
Parvalbumin fast-spiking interneurons are selectively altered by paediatric traumatic brain injury.
J Physiol. 2018 Apr 1;596(7):1277-1293. doi: 10.1113/JP275393. Epub 2018 Mar 5.
10
Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection.
J Neurosci. 2021 Oct 20;41(42):8848-8857. doi: 10.1523/JNEUROSCI.2687-19.2021. Epub 2021 Aug 27.

引用本文的文献

1
Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
Neuroscience. 2021 Jul 15;467:150-170. doi: 10.1016/j.neuroscience.2021.04.028. Epub 2021 May 2.
3
Modeling Neural Adaptation in Auditory Cortex.
Front Neural Circuits. 2018 Sep 5;12:72. doi: 10.3389/fncir.2018.00072. eCollection 2018.
4
Multifactorial Modeling of Impairment of Evoked Gamma Range Oscillations in Schizophrenia.
Front Comput Neurosci. 2016 Aug 26;10:89. doi: 10.3389/fncom.2016.00089. eCollection 2016.
5
Functional congruity in local auditory cortical microcircuits.
Neuroscience. 2016 Mar 1;316:402-19. doi: 10.1016/j.neuroscience.2015.12.057. Epub 2016 Jan 5.
6
Perceptual gap detection is mediated by gap termination responses in auditory cortex.
Curr Biol. 2014 Jul 7;24(13):1447-55. doi: 10.1016/j.cub.2014.05.031.
7
Natural neural projection dynamics underlying social behavior.
Cell. 2014 Jun 19;157(7):1535-51. doi: 10.1016/j.cell.2014.05.017.
8
Spatial pattern of intra-laminar connectivity in supragranular mouse auditory cortex.
Front Neural Circuits. 2014 Mar 11;8:15. doi: 10.3389/fncir.2014.00015. eCollection 2014.

本文引用的文献

1
Thalamocortical pathway specialization for sound frequency resolution.
J Comp Neurol. 2011 Feb 1;519(2):177-93. doi: 10.1002/cne.22501.
2
Distinct core thalamocortical pathways to central and dorsal primary auditory cortex.
Hear Res. 2011 Apr;274(1-2):95-104. doi: 10.1016/j.heares.2010.11.010. Epub 2010 Dec 8.
3
The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.
Nat Neurosci. 2011 Jan;14(1):100-7. doi: 10.1038/nn.2687. Epub 2010 Nov 14.
4
Visual representations by cortical somatostatin inhibitory neurons--selective but with weak and delayed responses.
J Neurosci. 2010 Oct 27;30(43):14371-9. doi: 10.1523/JNEUROSCI.3248-10.2010.
7
Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex.
Hear Res. 2011 Apr;274(1-2):121-8. doi: 10.1016/j.heares.2010.06.014. Epub 2010 Jun 25.
8
Laminar diversity of dynamic sound processing in cat primary auditory cortex.
J Neurophysiol. 2010 Jan;103(1):192-205. doi: 10.1152/jn.00624.2009. Epub 2009 Oct 28.
9
Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns.
Cereb Cortex. 2009 Apr;19(4):926-37. doi: 10.1093/cercor/bhn141. Epub 2008 Oct 1.
10
Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons.
J Neurosci. 2008 Apr 9;28(15):3897-910. doi: 10.1523/JNEUROSCI.5366-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验