Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.
Inorg Chem. 2011 Oct 17;50(20):10225-40. doi: 10.1021/ic201238n. Epub 2011 Sep 15.
Tri- and tetrafunctional enantiopure ligands have been prepared from 1,8-naphthalic anhydride and the amino acids L-alanine, D-phenylglycine, and L-asparagine to produce (S)-2-(1,8-naphthalimido)propanoic acid (HL(ala)), (R)-2-(1,8-naphthalimido)-2-phenylacetic acid (HL(phg)), and (S)-4-amino-2-(1,8 naphthalimido)-4-oxobutanoic acid (HL(asn)), respectively. Reactions of L(ala)(-) with copper(II) acetate under a variety of solvent conditions has led to the formation and characterization by X-ray crystallography of three similar copper(II) paddlewheel complexes with different axial ligands, [Cu(2)(L(ala))(4)(THF)(2)] (1), [Cu(2)(L(ala))(4)(HL(ala))] (2), and [Cu(2)(L(ala))(4)(py)(THF)] (3). A similar reaction using THF and L(phg)(-) leads to the formation of [Cu(2)(L(phg))(4)(THF)(2)] (4). With the exception of a disordered component in the structure of 4, the naphthalimide groups in all of these compounds are arranged on the same side of the square, central paddlewheel unit, forming what is known as the chiral crown configuration. A variety of π···π stacking interactions of the 1,8-naphthalimide groups organize all of these complexes into supramolecular structures. The addition of the amide group functionality in the L(asn)(-) ligand leads to the formation of tetrameric [Cu(4)(L(asn))(8)(py)(MeOH)] (5), where reciprocal axial coordination of one of the amide carbonyl oxygen atoms between two dimers leads to the tetramer. Extensive supramolecular interactions in 5, mainly the π···π stacking interactions of the 1,8-naphthalimide supramolecular synthon, support an open three-dimensional structure containing large pores filled with solvent. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to (S)-ethyl lactate vapor, the coordinated methanol molecule is replaced by (S)-ethyl lactate, bonding to the copper ion through the carbonyl oxygen, yielding [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)] (6) without a loss of crystallinity. With the exception of the replacement of the one axial ligand, the molecular structures of 5 and 6 are very similar. In a similar experiment of 5 with vapors of (R)-ethyl lactate, again a change occurs without a loss of crystallinity, but in this case the (R)-ethyl lactate displaces only slightly more than half of the axial methanol molecules forming [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] (7). Importantly, in 7, the (R)-ethyl lactate coordinates through the hydroxyl group. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to vapors of racemic ethyl lactate, the coordinated methanol molecule is displaced without a loss of crystallinity exclusively by (S)-ethyl lactate, yielding a new form of the tetramer [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], in which the ethyl lactate in the pocket bonds to the copper(II) ion through the carbonyl oxygen as with 6. Exposure of [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] to racemic ethyl lactate yields a third form of [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], where the three forms of [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)] have differences in the number of ordered (S)-ethyl lactate molecules located in the interstitial sites. These results demonstrate enantioselective bonding to a metal center in the chiral pocket of both 5 and 7 during single-crystal to single-crystal gas/solid-mediated exchange reactions.
三功能和四功能手性纯配体已由 1,8-萘二甲酸酐和氨基酸 L-丙氨酸、D-苯甘氨酸和 L-天冬酰胺制备得到,分别生成(S)-2-(1,8-萘二甲酰亚胺基)丙酸(HL(ala))、(R)-2-(1,8-萘二甲酰亚胺基)-2-苯乙酸(HL(phg))和(S)-4-氨基-2-(1,8-萘二甲酰亚胺基)-4-氧代丁酸(HL(asn))。在各种溶剂条件下,L(ala)(-)与醋酸铜(II)反应,通过 X 射线晶体学表征形成了三种具有不同轴向配体的类似铜(II)桨轮配合物,[Cu(2)(L(ala))(4)(THF)(2)] (1)、[Cu(2)(L(ala))(4)(HL(ala))] (2)和[Cu(2)(L(ala))(4)(py)(THF)] (3)。使用 THF 和 L(phg)(-)进行类似的反应,得到[Cu(2)(L(phg))(4)(THF)(2)] (4)。除了 4 的结构中存在一个无序部分外,所有这些化合物中的萘二甲酰亚胺基团都位于中央桨轮单元的同一侧,形成所谓的手性冠构型。1,8-萘二甲酰亚胺基团的各种π···π堆积相互作用将所有这些配合物组织成超分子结构。L(asn)(-)配体中酰胺基团的功能化导致形成四聚体[Cu(4)(L(asn))(8)(py)(MeOH)] (5),其中两个二聚体之间的一个酰胺羰基氧原子的反向轴向配位导致四聚体的形成。5 中的大量超分子相互作用,主要是 1,8-萘二甲酰亚胺超分子合成子的π···π堆积相互作用,支持一个开放的三维结构,其中包含充满溶剂的大孔。当[Cu(4)(L(asn))(8)(py)(MeOH)]的晶体暴露于(S)-乙基乳酸蒸气时,配位的甲醇分子被(S)-乙基乳酸取代,通过羰基氧与铜离子键合,得到[Cu(4)(L(asn))(8)(py)((S)-乙基乳酸)] (6),而不损失结晶度。除了一个轴向配体的取代外,5 和 6 的分子结构非常相似。在 5 与(R)-乙基乳酸蒸气的类似实验中,再次发生了变化,而不损失结晶度,但在这种情况下,(R)-乙基乳酸仅取代略多于一半的轴向甲醇分子,形成[Cu(4)(L(asn))(8)(py){((R)-乙基乳酸)(0.58)(MeOH)(0.42)}] (7)。重要的是,在 7 中,(R)-乙基乳酸通过羟基配位。当[Cu(4)(L(asn))(8)(py)(MeOH)]的晶体暴露于外消旋乙基乳酸蒸气时,配位的甲醇分子通过羰基氧被(S)-乙基乳酸取代,得到四聚体的新形式[Cu(4)(L(asn))(8)(py)((S)-乙基乳酸)],其中口袋中的乙基乳酸与铜(II)离子通过羰基氧键合,与 6 相同。将[Cu(4)(L(asn))(8)(py){((R)-乙基乳酸)(0.58)(MeOH)(0.42)}]暴露于外消旋乙基乳酸中,得到[Cu(4)(L(asn))(8)(py)((S)-乙基乳酸)]的第三种形式,其中[Cu(4)(L(asn))(8)(py)((S)-乙基乳酸)]的三种形式在位于间隙位点的有序(S)-乙基乳酸分子的数量上有所不同。这些结果表明,在单晶到单晶气体/固相介导的交换反应中,5 和 7 中的手性口袋中的金属中心具有对映选择性键合。