Suppr超能文献

热褪色视蛋白的化学动力学分析揭示了席夫碱热异构化和水解的不寻常能学。

Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base.

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06520.

Department of Chemistry, Yale University, New Haven, Connecticut 06520.

出版信息

J Biol Chem. 2011 Nov 4;286(44):38408-38416. doi: 10.1074/jbc.M111.280602. Epub 2011 Sep 15.

Abstract

The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H(2)O and D(2)O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments.

摘要

视紫红质的热性质设定了我们视觉的门槛,长期以来一直受到研究,但视紫红质热衰变的化学动力学尚未得到详细揭示。为了定量理解热衰变,我们提出了一个包含两条途径的动力学模型:1)11-顺式视黄醛的热异构化,随后是席夫碱(SB)的水解;2)黑暗状态视紫红质中 SB 的水解,随后是视蛋白催化的游离 11-顺式视黄醛的异构化。我们从数学上求解了动力学模型,并使用它来分析我们设计的四个实验的动力学数据,这些实验用于测定热衰变、异构化、使用黑暗状态视紫红质水解 SB 以及使用光激活视紫红质水解 SB。我们将该模型应用于 55°C 下的 WT 视紫红质和 E181Q 和 S186A 突变体,以及 59°C 下的 H(2)O 和 D(2)O 中的 WT 视紫红质。结果表明,氢键网络强烈抑制热异构化,但在视蛋白和激活的视紫红质中不太重要。此外,获得单个速率常数的能力允许比较各种条件下的热过程。我们的动力学模型和实验揭示了两种不寻常的能量性质:黑暗状态下热异构化和 SB 水解的速率的陡峭温度依赖性,以及黑暗状态下 SB 水解的强烈氘同位素效应。这些发现可应用于研究致病视紫红质突变体和其他视觉色素。

相似文献

1
Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base.
J Biol Chem. 2011 Nov 4;286(44):38408-38416. doi: 10.1074/jbc.M111.280602. Epub 2011 Sep 15.
2
Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants.
J Biol Chem. 2013 Jun 14;288(24):17698-712. doi: 10.1074/jbc.M112.397257. Epub 2013 Apr 26.
4
Kinetics of thermal activation of an ultraviolet cone pigment.
J Am Chem Soc. 2015 Jan 14;137(1):307-13. doi: 10.1021/ja510553f. Epub 2014 Dec 26.
5
Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
J Biol Chem. 2004 Dec 31;279(53):55886-94. doi: 10.1074/jbc.M408766200. Epub 2004 Oct 8.
6
Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision.
J Biol Chem. 2011 Aug 5;286(31):27622-9. doi: 10.1074/jbc.M111.233312. Epub 2011 Jun 9.
7
Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
J Biol Chem. 2004 Nov 12;279(46):48102-11. doi: 10.1074/jbc.M406857200. Epub 2004 Aug 20.
8
An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease.
FEBS Lett. 2017 Jun;591(12):1720-1731. doi: 10.1002/1873-3468.12637. Epub 2017 May 31.
9
Probing the remarkable thermal kinetics of visual rhodopsin with E181Q and S186A mutants.
J Chem Phys. 2017 Jun 7;146(21):215104. doi: 10.1063/1.4984818.
10
Rapid release of retinal from a cone visual pigment following photoactivation.
Biochemistry. 2012 May 22;51(20):4117-25. doi: 10.1021/bi201522h. Epub 2012 May 7.

引用本文的文献

1
Structural role of the T94I rhodopsin mutation in congenital stationary night blindness.
EMBO Rep. 2016 Oct;17(10):1431-1440. doi: 10.15252/embr.201642671. Epub 2016 Jul 25.
2
Advances in understanding the molecular basis of the first steps in color vision.
Prog Retin Eye Res. 2015 Nov;49:46-66. doi: 10.1016/j.preteyeres.2015.07.004. Epub 2015 Jul 15.
3
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10438-43. doi: 10.1073/pnas.1410826111. Epub 2014 Jul 7.
4
Constitutively active rhodopsin and retinal disease.
Adv Pharmacol. 2014;70:1-36. doi: 10.1016/B978-0-12-417197-8.00001-8.
5
Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants.
J Biol Chem. 2013 Jun 14;288(24):17698-712. doi: 10.1074/jbc.M112.397257. Epub 2013 Apr 26.

本文引用的文献

1
The bilayer enhances rhodopsin kinetic stability in bovine rod outer segment disk membranes.
Biophys J. 2011 Jun 22;100(12):2946-54. doi: 10.1016/j.bpj.2011.05.015.
2
Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision.
J Biol Chem. 2011 Aug 5;286(31):27622-9. doi: 10.1074/jbc.M111.233312. Epub 2011 Jun 9.
3
Role of bulk water in hydrolysis of the rhodopsin chromophore.
J Biol Chem. 2011 May 27;286(21):18930-7. doi: 10.1074/jbc.M111.234583. Epub 2011 Apr 1.
4
Crystal structure of metarhodopsin II.
Nature. 2011 Mar 31;471(7340):651-5. doi: 10.1038/nature09789. Epub 2011 Mar 9.
5
Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations.
J Mol Biol. 2011 Jan 14;405(2):584-606. doi: 10.1016/j.jmb.2010.11.003. Epub 2010 Nov 19.
6
Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding.
J Biol Chem. 2011 Jan 14;286(2):1420-8. doi: 10.1074/jbc.M110.151043. Epub 2010 Oct 21.
9
Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
Biochemistry. 2010 Feb 9;49(5):827-34. doi: 10.1021/bi901889t.
10
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14367-72. doi: 10.1073/pnas.0901074106. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验