Department of Chemistry, Yale University, New Haven, Connecticut 06520.
Department of Chemistry, Yale University, New Haven, Connecticut 06520.
J Biol Chem. 2011 Nov 4;286(44):38408-38416. doi: 10.1074/jbc.M111.280602. Epub 2011 Sep 15.
The thermal properties of rhodopsin, which set the threshold of our vision, have long been investigated, but the chemical kinetics of the thermal decay of rhodopsin has not been revealed in detail. To understand thermal decay quantitatively, we propose a kinetic model consisting of two pathways: 1) thermal isomerization of 11-cis-retinal followed by hydrolysis of Schiff base (SB) and 2) hydrolysis of SB in dark state rhodopsin followed by opsin-catalyzed isomerization of free 11-cis-retinal. We solve the kinetic model mathematically and use it to analyze kinetic data from four experiments that we designed to assay thermal decay, isomerization, hydrolysis of SB using dark state rhodopsin, and hydrolysis of SB using photoactivated rhodopsin. We apply the model to WT rhodopsin and E181Q and S186A mutants at 55 °C, as well as WT rhodopsin in H(2)O and D(2)O at 59 °C. The results show that the hydrogen-bonding network strongly restrains thermal isomerization but is less important in opsin and activated rhodopsin. Furthermore, the ability to obtain individual rate constants allows comparison of thermal processes under various conditions. Our kinetic model and experiments reveal two unusual energetic properties: the steep temperature dependence of the rates of thermal isomerization and SB hydrolysis in the dark state and a strong deuterium isotope effect on dark state SB hydrolysis. These findings can be applied to study pathogenic rhodopsin mutants and other visual pigments.
视紫红质的热性质设定了我们视觉的门槛,长期以来一直受到研究,但视紫红质热衰变的化学动力学尚未得到详细揭示。为了定量理解热衰变,我们提出了一个包含两条途径的动力学模型:1)11-顺式视黄醛的热异构化,随后是席夫碱(SB)的水解;2)黑暗状态视紫红质中 SB 的水解,随后是视蛋白催化的游离 11-顺式视黄醛的异构化。我们从数学上求解了动力学模型,并使用它来分析我们设计的四个实验的动力学数据,这些实验用于测定热衰变、异构化、使用黑暗状态视紫红质水解 SB 以及使用光激活视紫红质水解 SB。我们将该模型应用于 55°C 下的 WT 视紫红质和 E181Q 和 S186A 突变体,以及 59°C 下的 H(2)O 和 D(2)O 中的 WT 视紫红质。结果表明,氢键网络强烈抑制热异构化,但在视蛋白和激活的视紫红质中不太重要。此外,获得单个速率常数的能力允许比较各种条件下的热过程。我们的动力学模型和实验揭示了两种不寻常的能量性质:黑暗状态下热异构化和 SB 水解的速率的陡峭温度依赖性,以及黑暗状态下 SB 水解的强烈氘同位素效应。这些发现可应用于研究致病视紫红质突变体和其他视觉色素。