Chen Junxue, Wang Pei, Zhang Zhuomin M, Lu Yonghua, Ming Hai
Department of Optics and Optical Engineering, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026603. doi: 10.1103/PhysRevE.84.026603. Epub 2011 Aug 4.
The excitation of plasmons in a metallic nanostructure represents a feasible and practical approach for manipulating the propagation and absorption of light at the subwavelength scale. Of particular interest is the coupling between plasmons, which can be used to facilitate the spectral tunability and tailor the optical response of the structure. In this paper, we study the coupling between two highly localized plasmonic modes: gap plasmon polariton mode and magnetic polariton mode, supported by a metallic-dielectric multilayer structure. The strong coupling gives rise to the formation of hybrid plasmon modes and large mode splitting. These hybrid modes result in unique spectral-directional absorption characteristics in the structure. The findings hold promise in applications such as photonic and energy conversion systems as well as the design of plasmonic nanodevices.
金属纳米结构中等离激元的激发是一种在亚波长尺度上操纵光的传播和吸收的可行且实用的方法。特别令人感兴趣的是等离激元之间的耦合,它可用于促进光谱可调性并定制结构的光学响应。在本文中,我们研究了由金属 - 电介质多层结构支持的两种高度局域化的等离激元模式之间的耦合:间隙等离激元极化激元模式和磁极化激元模式。强耦合导致形成混合等离激元模式和大的模式分裂。这些混合模式在结构中产生独特的光谱 - 方向吸收特性。这些发现有望应用于光子和能量转换系统以及等离激元纳米器件的设计等领域。