Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States.
J Am Chem Soc. 2011 Nov 9;133(44):17796-806. doi: 10.1021/ja2069196. Epub 2011 Oct 17.
Synthetic and kinetic studies are used to uncover mechanistic details of the reduction of O(2) to water mediated by dirhodium complexes. The mixed-valence Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (1, tfepma = MeNP(OCH(2)CF(3))(2), CN(t)Bu = tert-butyl isocyanide) complex is protonated by HCl to produce Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (2), which promotes the reduction of O(2) to water with concomitant formation of Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4) (3). Reactions of the analogous diiridium complexes permit the identification of plausible reaction intermediates. Ir(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) (4) can be protonated to form the isolable complex Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H (5), which reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)(OOH) (6). In addition, 4 reacts with O(2) to form Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(η(2)-O(2)) (7), which can be protonated by HCl to furnish 6. Complexes 6 and 7 were both isolated in pure form and structurally and spectroscopically characterized. Kinetics examination of hydride complex 5 with O(2) and HCl furnishes a rate law that is consistent with an HCl-elimination mechanism, where O(2) binds an Ir(0) center to furnish an intermediate η(2)-peroxide intermediate. Dirhodium congener 2 obeys a rate law that not only is also consistent with an analogous HCl-elimination mechanism but also includes terms indicative of direct O(2) insertion and a unimolecular isomerization prior to oxygenation. The combined synthetic and mechanistic studies bespeak to the importance of peroxide and hydroperoxide intermediates in the reduction of O(2) to water by dirhodium hydride complexes.
合成和动力学研究用于揭示双铑配合物介导的 O(2)还原为水的反应机制细节。混合价态 Rh(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(1,tfepma = MeNP(OCH(2)CF(3))(2),CN(t)Bu = 叔丁基异氰化物)配合物被 HCl 质子化生成 Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H(2),该配合物促进 O(2)还原为水,同时生成 Rh(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4)(3)。类似的二铱配合物的反应允许鉴定合理的反应中间体。Ir(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(4)可以质子化形成可分离的配合物 Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)H(5),该配合物与 O(2)反应形成 Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(3)(OOH)(6)。此外,4 与 O(2)反应生成 Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)(η(2)-O(2))(7),该配合物可被 HCl 质子化生成 6。配合物 6 和 7 均以纯形式分离并进行了结构和光谱表征。对氢化物配合物 5 与 O(2)和 HCl 的动力学研究提供了一个速率定律,该定律与 HCl 消除机制一致,其中 O(2)与 Ir(0)中心结合生成中间体 η(2)-过氧化物中间体。二铑同系物 2 遵循的速率定律不仅与类似的 HCl 消除机制一致,还包括指示直接 O(2)插入和氧合前的单分子异构化的项。综合的合成和机理研究表明,过氧化物和氢过氧化物中间体在双铑氢化物配合物还原 O(2)为水的过程中非常重要。