Suppr超能文献

通过顺磁弛豫和甲基-甲基核 Overhauser 增强光谱对甲基化蛋白质进行自动化的序列和立体特异性分配。

Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy.

机构信息

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.

出版信息

J Biomol NMR. 2011 Nov;51(3):319-28. doi: 10.1007/s10858-011-9559-4. Epub 2011 Sep 4.

Abstract

Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic relaxation enhancement (PRE), induced by nitroxide spin-labels incorporated at only a few surface-exposed engineered cysteines, provides fast, straightforward and robust access to methyl group resonance assignments, including stereoassignments for the methyl groups of leucine and valine. Neither prior assignments, including backbone assignments, for the protein, nor experiments that transfer magnetization between methyl groups and the protein backbone, are required. PRE-derived assignments are refined by 4D methyl-methyl nuclear Overhauser enhancement data, eliminating ambiguities and errors that may arise due to the high sensitivity of PREs to the potential presence of sparsely-populated transient states.

摘要

甲基横向弛豫优化波谱技术(Methyl-transverse relaxation optimized spectroscopy)正在迅速成为研究大小约为 1 MDa 的超大蛋白质结构和动力学的首选 NMR 技术。然而,数据解释需要对甲基进行赋值,这仍然是一个极具挑战性和耗时的过程。在这里,我们证明,与已知的 3D 结构相结合,仅在几个表面暴露的工程半胱氨酸上掺入的氮氧自由基自旋标记物引起的顺磁弛豫增强(paramagnetic relaxation enhancement,PRE),可以快速、直接且稳健地获得甲基共振分配,包括亮氨酸和缬氨酸甲基的立体分配。既不需要该蛋白质的先前分配,包括骨架分配,也不需要在甲基和蛋白质骨架之间转移磁化的实验。通过 4D 甲基-甲基核 Overhauser 增强数据对 PRE 衍生的分配进行细化,消除了由于 PRE 对稀疏瞬态态的潜在存在的高度敏感性而可能产生的歧义和错误。

相似文献

2
Intra-residue methyl-methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment.
J Biomol NMR. 2019 Dec;73(12):749-757. doi: 10.1007/s10858-019-00287-9. Epub 2019 Nov 12.
3
A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins.
Methods Enzymol. 2016;566:35-57. doi: 10.1016/bs.mie.2015.08.033. Epub 2015 Sep 26.
4
Nuclear overhauser spectroscopy of chiral CHD methylene groups.
J Biomol NMR. 2016 Jan;64(1):27-37. doi: 10.1007/s10858-015-0002-0. Epub 2015 Nov 27.
5
Practical Aspects of Paramagnetic Relaxation Enhancement in Biological Macromolecules.
Methods Enzymol. 2015;564:485-97. doi: 10.1016/bs.mie.2015.06.032. Epub 2015 Jul 2.
9
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR.
J Biomol NMR. 2012 Jun;53(2):113-24. doi: 10.1007/s10858-012-9629-2. Epub 2012 Apr 25.

引用本文的文献

1
UnidecNMR: automatic peak detection for NMR spectra in 1-4 dimensions.
Nat Commun. 2025 Jan 7;16(1):449. doi: 10.1038/s41467-024-54899-3.
2
AssignSLP_GUI, a software tool exploiting AI for NMR resonance assignment of sparsely labeled proteins.
J Magn Reson. 2022 Dec;345:107336. doi: 10.1016/j.jmr.2022.107336. Epub 2022 Nov 19.
3
Large-Scale Conformational Changes of FhaC Provide Insights Into the Two-Partner Secretion Mechanism.
Front Mol Biosci. 2022 Jul 22;9:950871. doi: 10.3389/fmolb.2022.950871. eCollection 2022.
4
TAPBPR employs a ligand-independent docking mechanism to chaperone MR1 molecules.
Nat Chem Biol. 2022 Aug;18(8):859-868. doi: 10.1038/s41589-022-01049-9. Epub 2022 Jun 20.
7
Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy.
Annu Rev Biophys. 2022 May 9;51:223-246. doi: 10.1146/annurev-biophys-090921-120150. Epub 2022 Jan 19.
8
An allosteric pocket for inhibition of bacterial Enzyme I identified by NMR-based fragment screening.
J Struct Biol X. 2020 Jul 21;4:100034. doi: 10.1016/j.yjsbx.2020.100034. eCollection 2020.
10
Automatic structure-based NMR methyl resonance assignment in large proteins.
Nat Commun. 2019 Oct 29;10(1):4922. doi: 10.1038/s41467-019-12837-8.

本文引用的文献

1
A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data.
J Biomol NMR. 2011 Sep;51(1-2):105-14. doi: 10.1007/s10858-011-9545-x. Epub 2011 Sep 27.
3
Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins.
J Am Chem Soc. 2010 Dec 29;132(51):18340-50. doi: 10.1021/ja1083656. Epub 2010 Dec 7.
6
Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR.
Science. 2010 Apr 2;328(5974):98-102. doi: 10.1126/science.1184991.
7
Site-directed spin labeling of a genetically encoded unnatural amino acid.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21637-42. doi: 10.1073/pnas.0912009106. Epub 2009 Dec 7.
8
Automated assignment in selectively methyl-labeled proteins.
J Am Chem Soc. 2009 Jul 15;131(27):9480-1. doi: 10.1021/ja9020233.
10
An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein.
J Biomol NMR. 2009 Feb;43(2):111-9. doi: 10.1007/s10858-008-9294-7. Epub 2008 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验