Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, United States.
Math Biosci. 2011 Dec;234(2):95-107. doi: 10.1016/j.mbs.2011.09.001. Epub 2011 Sep 14.
A system of 13 ordinary differential equations with 42 parameters is presented to model hormonal regulation of the menstrual cycle. For an excellent fit to clinical data, the model requires a 36 h time delay for the effect of inhibin on the synthesis of follicle stimulating hormone. Biological and mathematical reasons for this delay are discussed. Bifurcations with respect to changes in three important parameters are examined. One parameter represents the level of estradiol adequate for significant synthesis of luteinizing hormone. Bifurcation diagrams with respect to this parameter reveal an interval of parameter values for which a unique stable periodic solution exists and this solution represents a menstrual cycle during which ovulation occurs. The second parameter measures mass transfer between the first two stages of ovarian development and is indicative of healthy follicular growth. The third parameter is the time delay. Changes in the second parameter and the time delay affect the size of the uniqueness interval defined with respect to the first parameter. Saddle-node, transcritical and degenerate Hopf bifurcations are studied.
本文提出了一个包含 13 个常微分方程和 42 个参数的系统,用于模拟激素对月经周期的调节。为了使模型与临床数据拟合得非常好,该模型需要对抑制素对卵泡刺激素合成的影响设置 36 小时的时间延迟。讨论了这种延迟的生物学和数学原因。还检查了三个重要参数变化的分岔。一个参数表示雌二醇水平,足以使黄体生成素的合成显著增加。关于这个参数的分岔图显示了一个参数值的区间,在这个区间内存在一个唯一稳定的周期解,这个解代表了一个排卵发生的月经周期。第二个参数衡量卵巢发育前两个阶段之间的质量转移,表明卵泡生长健康。第三个参数是时间延迟。第二个参数和时间延迟的变化会影响相对于第一个参数定义的唯一性区间的大小。研究了鞍结、跨临界和退化 Hopf 分岔。