Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA.
Langmuir. 2011 Dec 6;27(23):14408-18. doi: 10.1021/la203066d. Epub 2011 Nov 8.
We report the synthesis, characterization, and catalytic properties of novel monodisperse SiO(2)@Pd-PAMAM core-shell microspheres containing SiO(2) microsphere cores and PAMAM dendrimer-encapsulated Pd nanoparticle (Pd-PAMAM) shells. First, SiO(2) microspheres, which were prepared by the Stöber method, were functionalized with vinyl groups by grafting their surfaces with vinyltriethoxysilane (VTS). The vinyl groups were then converted into epoxides by using m-chloroperoxybenzoic acid. Upon treatment with amine-terminated G4 poly(amidoamine) (PAMAM) dendrimers, the SiO(2)-supported epoxides underwent ring-opening and gave SiO(2)@PAMAM core-shell microspheres. Pd nanoparticles within the cores of the SiO(2)-supported PAMAM dendrimers were synthesized by letting Pd(II) ions complex with the amine groups in the cores of the dendrimers and then reducing them into Pd(0) with NaBH(4). This produced the SiO(2)@Pd-PAMAM core-shell microspheres. The presence of the different functional groups on the materials was monitored by following the changes in FTIR spectra, elemental analyses, and weight losses on thermogravimetric traces. Transmission electron microscopy (TEM) images showed the presence of Pd nanoparticles with average size of 1.56 ± 0.67 nm on the surface of the monodisperse SiO(2)@Pd-PAMAM core-shell microspheres. The SiO(2)@Pd-PAMAM core-shell microspheres were successfully used as an easily recyclable catalyst for hydrogenation of various olefins, alkynes, keto, and nitro groups, giving ~100% conversion and high turnover numbers (TONs) under 10 bar H(2) pressure, at room temperature and in times ranging from 10 min to 3 h. In addition, the SiO(2)@Pd-PAMAM core-shell microspheres were proven to be recyclable catalysts up to five times with barely any leaching of palladium into the reaction mixture.
我们报告了新型单分散 SiO(2)@Pd-PAMAM 核壳微球的合成、表征和催化性能,其包含 SiO(2) 微球核和 PAMAM 树枝状大分子包裹的 Pd 纳米粒子(Pd-PAMAM)壳。首先,通过 Stöber 法制备的 SiO(2) 微球通过接枝其表面上的乙烯基三乙氧基硅烷(VTS)使其表面官能化形成乙烯基。然后使用间氯过氧苯甲酸将乙烯基转化为环氧化物。在与末端为胺的 G4 聚(酰胺-胺)(PAMAM)树枝状大分子反应后,SiO(2) 负载的环氧化物开环,得到 SiO(2)@PAMAM 核壳微球。通过让 Pd(II) 离子与树枝状大分子核中的胺基络合,然后用 NaBH(4) 将其还原为 Pd(0),在 SiO(2) 负载的 PAMAM 树枝状大分子核中的 Pd 纳米粒子被合成。这产生了 SiO(2)@Pd-PAMAM 核壳微球。通过跟踪 FTIR 光谱、元素分析和热重曲线上的重量损失来监测材料上不同官能团的存在。透射电子显微镜(TEM)图像显示,在单分散的 SiO(2)@Pd-PAMAM 核壳微球表面存在平均粒径为 1.56 ± 0.67nm 的 Pd 纳米粒子。SiO(2)@Pd-PAMAM 核壳微球成功用作各种烯烃、炔烃、酮和硝基加氢的易于回收的催化剂,在 10 巴 H(2)压力、室温下和 10 分钟至 3 小时的时间范围内,转化率接近 100%,TO 数(TON)高。此外,SiO(2)@Pd-PAMAM 核壳微球被证明是可回收的催化剂,可重复使用五次,钯几乎没有浸出到反应混合物中。