Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
Neuroscience. 2011 Dec 1;197:89-98. doi: 10.1016/j.neuroscience.2011.09.017. Epub 2011 Sep 16.
The identification and characterization of excitatory and inhibitory neurons are significant steps in understanding neural network functions. In this study, we investigated the intrinsic electrophysiological properties of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure that is involved in gaze holding, using whole-cell recordings in brainstem slices from vesicular GABA transporter (VGAT)-Venus transgenic rats, in which inhibitory neurons express the fluorescent protein Venus. To characterize the intrinsic properties of these neurons, we recorded afterhyperpolarization (AHP) profiles and firing patterns from Venus-expressing [Venus⁺] and Venus-non-expressing [Venus⁻] PHN neurons. Although both types of neurons showed a wide variety of AHP profiles and firing patterns, oscillatory firing was specific to Venus⁺ neurons, while a firing pattern showing only a few spikes was specific to Venus⁻ neurons. In addition, AHPs without a slow component and delayed spike generation were preferentially displayed by Venus⁺ neurons, whereas a firing pattern with constant interspike intervals was preferentially displayed by Venus⁻ neurons. We evaluated the mRNAs expression of glutamate decarboxylase (GAD65, GAD67) and glycine transporter 2 (GlyT2) to determine whether the recorded Venus⁺ neurons were GABAergic or glycinergic. Of the 67 Venus⁺ neurons tested, GlyT2 expression alone was detected in only one neuron. Approximately 40% (28/67) expressed GAD65 and/or GAD67 (GABAergic neuron), and the remainder (38/67) expressed both GAD(s) and GlyT2 (GABA&GLY neuron). These results suggest that most inhibitory PHN neurons use either GABA or both GABA and glycine as neurotransmitters. Although the overall distribution of firing patterns in GABAergic neurons was similar to that of GABA&GLY neurons, only GABA&GLY neurons exhibited a firing pattern with a long first interspike interval. These differential electrophysiological properties will be useful for the identification of specific types of PHN neurons.
鉴定和描述兴奋性和抑制性神经元是理解神经网络功能的重要步骤。在这项研究中,我们使用脑片全细胞记录技术,在表达荧光蛋白 Venus 的囊泡 GABA 转运体(VGAT)-Venus 转基因大鼠的脑桥上的 Prepositus Hypoglossi 核(PHN)中,研究了参与凝视保持的神经元的内在电生理特性。为了描述这些神经元的内在特性,我们从 Venus 表达阳性(Venus⁺)和 Venus 表达阴性(Venus⁻)PHN 神经元中记录了后超极化(AHP)曲线和放电模式。尽管这两种类型的神经元都表现出多种多样的 AHP 曲线和放电模式,但振荡放电是 Venus⁺神经元所特有的,而只表现出少数几个尖峰的放电模式是 Venus⁻神经元所特有的。此外,没有慢成分的 AHP 和延迟的尖峰产生优先出现在 Venus⁺神经元中,而具有恒定的尖峰间间隔的放电模式优先出现在 Venus⁻神经元中。我们评估了谷氨酸脱羧酶(GAD65、GAD67)和甘氨酸转运体 2(GlyT2)的 mRNA 表达,以确定记录的 Venus⁺神经元是 GABA 能还是甘氨酸能。在测试的 67 个 Venus⁺神经元中,仅有一个神经元单独表达 GlyT2。约 40%(28/67)表达 GAD65 和/或 GAD67(GABA 能神经元),其余(38/67)同时表达 GAD(s)和 GlyT2(GABA&GLY 神经元)。这些结果表明,大多数抑制性 PHN 神经元使用 GABA 或 GABA 和甘氨酸作为神经递质。尽管 GABA 能神经元的放电模式总体分布与 GABA&GLY 神经元相似,但只有 GABA&GLY 神经元表现出具有长第一个尖峰间间隔的放电模式。这些差异的电生理特性将有助于鉴定特定类型的 PHN 神经元。