Brazilian Nanotechnology National Laboratory, Campinas, P.O. 6192, Brazil.
Chemistry. 2011 Oct 4;17(41):11515-9. doi: 10.1002/chem.201100972. Epub 2011 Aug 26.
The development of reliable nanostructured devices is intrinsically dependent on the description and manipulation of materials' properties at the atomic scale. Consequently, several technological advances are dependent on improvements in the characterization techniques and in the models used to describe the properties of nanosized materials as a function of the synthesis parameters. The evaluation of doping element distributions in nanocrystals is directly linked to fundamental aspects that define the properties of the material, such as surface-energy distribution, nanoparticle shape, and crystal growth mechanism. However, this is still one of the most challenging tasks in the characterization of materials because of the required spatial resolution and other various restrictions from quantitative characterization techniques, such as sample degradation and signal-to-noise ratio. This paper addresses the dopant segregation characterization for two antimony-doped tin oxide (Sb:SnO(2)) systems, with different Sb doping levels, by the combined use of experimental and simulated high-resolution transmission electron microscopy (HRTEM) images and surface-energy ab initio calculations. The applied methodology provided three-dimensional models with geometrical and compositional information that were demonstrated to be self-consistent and correspond to the systems' mean properties. The results evidence that the dopant distribution configuration is dependent on the system composition and that dopant atom redistribution may be an active mechanism for the overall surface-energy minimization.
可靠的纳米结构器件的发展本质上依赖于对材料原子尺度性质的描述和控制。因此,许多技术进步依赖于改进表征技术和用于描述纳米材料性能的模型,这些模型作为合成参数的函数。掺杂元素在纳米晶体中的分布的评估与定义材料性质的基本方面直接相关,例如表面能分布、纳米颗粒形状和晶体生长机制。然而,由于需要空间分辨率以及定量表征技术的其他各种限制,例如样品降解和信噪比,这仍然是材料表征中最具挑战性的任务之一。本文通过实验和模拟高分辨率透射电子显微镜(HRTEM)图像以及表面能从头计算的组合使用,对两种不同 Sb 掺杂水平的 Sb 掺杂氧化锡(Sb:SnO(2))系统的掺杂体偏析特性进行了研究。所应用的方法提供了具有几何和组成信息的三维模型,这些模型被证明是自洽的,并与系统的平均性质相对应。结果表明,掺杂剂分布构型取决于系统组成,并且掺杂原子再分布可能是整体表面能最小化的一种主动机制。