Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain.
Phys Chem Chem Phys. 2011 Nov 21;13(43):19485-9. doi: 10.1039/c1cp20457b. Epub 2011 Sep 29.
The process of formation of magnetite nanoparticles has been investigated by liquid chromatography and mass spectroscopy in the liquid phase decomposition of either Fe(III) acetylacetonate with decanoic acid or Fe(III) decanoate. In both cases, the dissociation into radicals of the iron carboxylate bonds provides the reduction of the Fe(III) cations and the oxygen atoms required for the formation of the mixed-valence inverse spinel magnetite structure. A reaction mechanism is proposed. It is also shown that the reaction of free decanoic acid with the Fe(III) cations in solution promotes the growth of faceted particles at the reflux temperature of the solvent (ca. 280 °C), while, under the same conditions, the stepwise decomposition of the Fe(III) decanoate generates smaller and pseudo-spherical particles. The latter also yields faceted particles when the temperature is increased above that of the total decomposition of the salt. Magnetic measurements make evident that the reaction starting from Fe(III) acetylacetonate yields nanoparticles with higher magnetization and lower spin disorder, due to the improved regularity of the surface crystal structure. The starting conditions for the decarboxylation process thus affect the morphology and magnetic properties of the resulting nanoparticles.
通过液相分解乙酰丙酮铁(III)与癸酸或铁(III)癸酸,研究了磁铁矿纳米粒子的形成过程。在这两种情况下,铁羧酸盐键的自由基离解提供了形成混合价反尖晶石磁铁矿结构所需的 Fe(III)阳离子和氧原子的还原。提出了一种反应机制。还表明,在溶剂回流温度(约 280°C)下,游离癸酸与溶液中的 Fe(III)阳离子的反应促进了各向异性颗粒的生长,而在相同条件下,Fe(III)癸酸酯的分步分解生成了更小的类球形颗粒。当温度升高到盐完全分解以上时,后者也会产生各向异性颗粒。磁性测量表明,由于表面晶体结构的规则性提高,从 Fe(III)乙酰丙酮开始的反应生成了具有更高磁化强度和更低自旋无序的纳米颗粒。因此,脱羧过程的起始条件会影响所得纳米颗粒的形态和磁性。