Suppr超能文献

用于评估连续尺度诊断测试的简单非参数置信区域。

Simple nonparametric confidence regions for the evaluation of continuous-scale diagnostic tests.

作者信息

Adimari Gianfranco, Chiogna Monica

机构信息

University of Padua, Italy.

出版信息

Int J Biostat. 2010;6(1):Article 24. doi: 10.2202/1557-4679.1256.

Abstract

The evaluation of the ability of a diagnostic test to separate diseased subjects from non-diseased subjects is a crucial issue in modern medicine. The accuracy of a continuous-scale test at a chosen cut-off level can be measured by its sensitivity and specificity, i.e. by the probabilities that the test correctly identifies the diseased and non-diseased subjects, respectively. In practice, sensitivity and specificity of the test are unknown. Moreover, which cut-off level to use is also generally unknown in that no preliminary indications driving its choice could be available. In this paper, we address the problem of making joint inference on pairs of quantities defining accuracy of a diagnostic test, in particular, when one of the two quantities is the cut-off level. We propose a technique based on an empirical likelihood statistic that allows, within a unified framework, to build bivariate confidence regions for the pair (sensitivity, cut-off level) at a fixed value of specificity as well as for the pair (specificity, cut-off level) at a fixed value of sensitivity or the pair (sensitivity, specificity) at a fixed cut-off value. A simulation study is carried out to assess the finite-sample accuracy of the method. Moreover, we apply the method to two real examples.

摘要

评估诊断测试区分患病者与非患病者的能力是现代医学中的一个关键问题。连续尺度测试在选定截断水平下的准确性可以通过其灵敏度和特异度来衡量,即分别通过测试正确识别患病者和非患病者的概率来衡量。在实际中,测试的灵敏度和特异度是未知的。此外,通常也不知道使用哪个截断水平,因为没有可用于指导其选择的初步指示。在本文中,我们解决了对定义诊断测试准确性的成对数量进行联合推断的问题,特别是当这两个数量之一是截断水平时。我们提出了一种基于经验似然统计量的技术,该技术允许在统一框架内,针对特异度固定值下的(灵敏度,截断水平)对、灵敏度固定值下的(特异度,截断水平)对或截断值固定时的(灵敏度,特异度)对构建双变量置信区域。进行了一项模拟研究以评估该方法的有限样本准确性。此外,我们将该方法应用于两个实际例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验