Suppr超能文献

分子进化的遗传等距结果与突变率无关。

The Genetic Equidistance Result of Molecular Evolution is Independent of Mutation Rates.

作者信息

Huang Shi

机构信息

The Burnham Institute for Medical Research, 10901 North Torrey Pines Roads, La Jolla, CA 92037.

出版信息

J Comput Sci Syst Biol. 2008 Dec 26;1:92-102. doi: 10.4172/jcsb.1000009.

Abstract

The well-established genetic equidistance result shows that sister species are approximately equidistant to a simpler outgroup as measured by DNA or protein dissimilarity. The equidistance result is the most direct evidence, and remains the only evidence, for the constant mutation rate interpretation of this result, known as the molecular clock. However, data independent of the equidistance result have steadily accumulated in recent years that often violate a constant mutation rate. Many have automatically inferred non-equidistance whenever a non-constant mutation rate was observed, based on the unproven assumption that the equidistance result is an outcome of constant mutation rate. Here it is shown that the equidistance result remains valid even when different species can be independently shown to have different mutation rates. A random sampling of 50 proteins shows that nearly all proteins display the equidistance result despite the fact that many proteins have non-constant mutation rates. Therefore, the genetic equidistance result does not necessarily mean a constant mutation rate. Observations of different mutation rates do not invalidate the genetic equidistance result. New ideas are needed to explain the genetic equidistance result that must grant different mutation rates to different species and must be independently testable.

摘要

早已确立的遗传等距结果表明,通过DNA或蛋白质差异来衡量,姐妹物种与一个更简单的外类群的距离大致相等。等距结果是对这一结果进行恒定突变率解释(即分子钟)的最直接证据,并且仍然是唯一的证据。然而,近年来,与等距结果无关的数据不断积累,这些数据常常违背恒定突变率。许多人每当观察到非恒定突变率时,就会自动推断出非等距现象,这是基于一个未经证实的假设,即等距结果是恒定突变率的产物。本文表明,即使不同物种可以独立证明具有不同的突变率,等距结果仍然有效。对50种蛋白质的随机抽样显示,几乎所有蛋白质都呈现出等距结果,尽管许多蛋白质具有非恒定突变率。因此,遗传等距结果不一定意味着恒定突变率。不同突变率的观察结果并不会使遗传等距结果无效。需要新的观点来解释遗传等距结果,这些观点必须允许不同物种具有不同的突变率,并且必须是可独立检验的。

相似文献

1
The Genetic Equidistance Result of Molecular Evolution is Independent of Mutation Rates.
J Comput Sci Syst Biol. 2008 Dec 26;1:92-102. doi: 10.4172/jcsb.1000009.
2
The genetic equidistance phenomenon at the proteomic level.
Genomics. 2016 Jul;108(1):25-30. doi: 10.1016/j.ygeno.2016.03.002. Epub 2016 Mar 10.
3
Genetic equidistance at nucleotide level.
Genomics. 2017 Jul;109(3-4):192-195. doi: 10.1016/j.ygeno.2017.03.002. Epub 2017 Mar 14.
4
The genetic equidistance result: misreading by the molecular clock and neutral theory and reinterpretation nearly half of a century later.
Sci China Life Sci. 2013 Mar;56(3):254-61. doi: 10.1007/s11427-013-4452-x. Epub 2013 Mar 23.
5
Equidistant Intervals in Perspective Photographs and Paintings.
Iperception. 2016 Aug 17;7(4):2041669516662666. doi: 10.1177/2041669516662666. eCollection 2016 Jul-Aug.
7
Monocular Perception of Equidistance: The Effects of Viewing Experience and Motion-generated Information.
Optom Vis Sci. 2022 May 1;99(5):470-478. doi: 10.1097/OPX.0000000000001878. Epub 2022 Feb 11.
8
The locus of perceived equidistance in binocular vision.
Percept Psychophys. 2004 Oct;66(7):1162-70. doi: 10.3758/bf03196843.
9
[Evolutionary process unveiled by the maximum genetic diversity hypothesis].
Yi Chuan. 2013 May;35(5):599-606. doi: 10.3724/sp.j.1005.2013.00599.
10
Folded catadioptric panoramic lens with an equidistance projection scheme.
Appl Opt. 2005 May 10;44(14):2759-67. doi: 10.1364/ao.44.002759.

引用本文的文献

1
Limitations of sequence dissimilarity as a predictor of prokaryotic lineage.
Open Biol. 2025 Mar;15(3):240302. doi: 10.1098/rsob.240302. Epub 2025 Mar 19.
2
Relation between two evolutionary clocks reveal new insights in bacterial evolution.
Access Microbiol. 2022 Feb 16;4(2):000265. doi: 10.1099/acmi.0.000265. eCollection 2022.
3
Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population.
PLoS One. 2017 Nov 3;12(11):e0187644. doi: 10.1371/journal.pone.0187644. eCollection 2017.
4
Tripartite genome of all species.
F1000Res. 2016 Feb 19;5:195. doi: 10.12688/f1000research.8008.1. eCollection 2016.

本文引用的文献

1
A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing.
Cell. 2008 Aug 8;134(3):416-26. doi: 10.1016/j.cell.2008.06.021.
3
The medaka draft genome and insights into vertebrate genome evolution.
Nature. 2007 Jun 7;447(7145):714-9. doi: 10.1038/nature05846.
4
Dates from the molecular clock: how wrong can we be?
Trends Ecol Evol. 2007 Apr;22(4):180-4. doi: 10.1016/j.tree.2006.11.013. Epub 2006 Dec 8.
5
Molecular clocks: when times are a-changin'.
Trends Genet. 2006 Feb;22(2):79-83. doi: 10.1016/j.tig.2005.11.006. Epub 2005 Dec 13.
6
Molecular clocks: four decades of evolution.
Nat Rev Genet. 2005 Aug;6(8):654-62. doi: 10.1038/nrg1659.
7
Organismal complexity, protein complexity, and gene duplicability.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15661-5. doi: 10.1073/pnas.2536672100. Epub 2003 Dec 5.
9
PRIMARY STRUCTURE AND EVOLUTION OF CYTOCHROME C.
Proc Natl Acad Sci U S A. 1963 Oct;50(4):672-9. doi: 10.1073/pnas.50.4.672.
10
Molecular clock mirages.
Bioessays. 1999 Jan;21(1):71-5. doi: 10.1002/(SICI)1521-1878(199901)21:1<71::AID-BIES9>3.0.CO;2-B.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验