Suppr超能文献

用扩展巴科斯-诺尔范式(EBNF)形式化描述标准人类变异命名法。

A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form.

机构信息

Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

BMC Bioinformatics. 2011;12 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2105-12-S4-S5. Epub 2011 Jul 5.

Abstract

BACKGROUND

The use of a standard human sequence variant nomenclature is advocated by the Human Genome Variation Society in order to unambiguously describe genetic variants in databases and literature. There is a clear need for tools that allow the mining of data about human sequence variants and their functional consequences from databases and literature. Existing text mining focuses on the recognition of protein variants and their effects. The recognition of variants at the DNA and RNA levels is essential for dissemination of variant data for diagnostic purposes. Development of new tools is hampered by the complexity of the current nomenclature, which requires processing at the character level to recognize the specific syntactic constructs used in variant descriptions.

RESULTS

We approached the gene variant nomenclature as a scientific sublanguage and created two formal descriptions of the syntax in Extended Backus-Naur Form: one at the DNA-RNA level and one at the protein level. To ensure compatibility to older versions of the human sequence variant nomenclature, previously recommended variant description formats have been included. The first grammar versions were designed to help build variant description handling in the Alamut mutation interpretation software. The DNA and RNA level descriptions were then updated and used to construct the context-free parser of the Mutalyzer 2 sequence variant nomenclature checker, which has already been used to check more than one million variant descriptions.

CONCLUSIONS

The Extended Backus-Naur Form provided an overview of the full complexity of the syntax of the sequence variant nomenclature, which remained hidden in the textual format and the division of the recommendations across the DNA, RNA and protein sections of the Human Genome Variation Society nomenclature website (http://www.hgvs.org/mutnomen/). This insight into the syntax of the nomenclature could be used to design detailed and clear rules for software development. The Mutalyzer 2 parser demonstrated that it facilitated decomposition of complex variant descriptions into their individual parts. The Extended Backus-Naur Form or parts of it can be used or modified by adding rules, allowing the development of specific sequence variant text mining tools and other programs, which can generate or handle sequence variant descriptions.

摘要

背景

为了在数据库和文献中明确描述遗传变异,人类基因组变异协会提倡使用标准的人类序列变异命名法。显然需要有工具可以从数据库和文献中挖掘有关人类序列变异及其功能后果的数据。现有的文本挖掘主要集中在识别蛋白质变异及其影响上。在 DNA 和 RNA 水平识别变异对于传播用于诊断目的的变异数据是必不可少的。由于当前命名法的复杂性,新工具的开发受到阻碍,这需要在字符级别进行处理,以识别变异描述中使用的特定语法结构。

结果

我们将基因变异命名法视为一种科学子语言,并以扩展巴科斯-诺尔范式(EBNF)的形式创建了两个语法描述:一个用于 DNA-RNA 水平,一个用于蛋白质水平。为了确保与旧版本的人类序列变异命名法兼容,之前推荐的变异描述格式也已包含在内。第一个语法版本旨在帮助在 Alamut 突变解释软件中构建变异描述处理。然后更新 DNA 和 RNA 水平的描述,并将其用于构建 Mutalyzer 2 序列变异命名法检查器的无上下文解析器,该检查器已经用于检查超过一百万个变异描述。

结论

扩展巴科斯-诺尔范式(EBNF)提供了序列变异命名法语法的完整复杂性概述,这些复杂性在文本格式和人类基因组变异协会命名法网站(http://www.hgvs.org/mutnomen/)的 DNA、RNA 和蛋白质部分之间的推荐划分中隐藏起来。对命名法语法的这种深入了解可用于为软件开发设计详细和清晰的规则。Mutalyzer 2 解析器证明,它有助于将复杂的变异描述分解为其各个部分。扩展巴科斯-诺尔范式(EBNF)或其部分可以通过添加规则来使用或修改,从而允许开发特定的序列变异文本挖掘工具和其他程序,这些工具可以生成或处理序列变异描述。

相似文献

1
A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form.
BMC Bioinformatics. 2011;12 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2105-12-S4-S5. Epub 2011 Jul 5.
2
Sequence Variant Descriptions: HGVS Nomenclature and Mutalyzer.
Curr Protoc Hum Genet. 2016 Jul 1;90:7.13.1-7.13.19. doi: 10.1002/cphg.2.
4
Describing structural changes by extending HGVS sequence variation nomenclature.
Hum Mutat. 2011 May;32(5):507-11. doi: 10.1002/humu.21427. Epub 2011 Mar 15.
5
Mutalyzer 2: next generation HGVS nomenclature checker.
Bioinformatics. 2021 Sep 29;37(18):2811-2817. doi: 10.1093/bioinformatics/btab051.
6
HGVS Recommendations for the Description of Sequence Variants: 2016 Update.
Hum Mutat. 2016 Jun;37(6):564-9. doi: 10.1002/humu.22981. Epub 2016 Mar 25.
7
Describing Sequence Variants Using HGVS Nomenclature.
Methods Mol Biol. 2017;1492:243-251. doi: 10.1007/978-1-4939-6442-0_17.
8
VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions.
Hum Mutat. 2018 Jan;39(1):61-68. doi: 10.1002/humu.23348. Epub 2017 Oct 17.
9
An efficient algorithm for the extraction of HGVS variant descriptions from sequences.
Bioinformatics. 2015 Dec 1;31(23):3751-7. doi: 10.1093/bioinformatics/btv443. Epub 2015 Jul 31.
10
hgvs: A Python package for manipulating sequence variants using HGVS nomenclature: 2018 Update.
Hum Mutat. 2018 Dec;39(12):1803-1813. doi: 10.1002/humu.23615. Epub 2018 Sep 5.

引用本文的文献

1
HGVS Nomenclature 2024: improvements to community engagement, usability, and computability.
Genome Med. 2024 Dec 20;16(1):149. doi: 10.1186/s13073-024-01421-5.
2
Murine allele and transgene symbols: ensuring unique, concise, and informative nomenclature.
Mamm Genome. 2022 Mar;33(1):108-119. doi: 10.1007/s00335-021-09902-3. Epub 2021 Aug 14.
3
Aggregate penetrance of genomic variants for actionable disorders in European and African Americans.
Sci Transl Med. 2016 Nov 9;8(364):364ra151. doi: 10.1126/scitranslmed.aag2367.
4
Human genotype-phenotype databases: aims, challenges and opportunities.
Nat Rev Genet. 2015 Dec;16(12):702-15. doi: 10.1038/nrg3932. Epub 2015 Nov 10.
5
A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature.
Bioinformatics. 2015 Jan 15;31(2):268-70. doi: 10.1093/bioinformatics/btu630. Epub 2014 Sep 30.
6
A methodology for a minimum data set for rare diseases to support national centers of excellence for healthcare and research.
J Am Med Inform Assoc. 2015 Jan;22(1):76-85. doi: 10.1136/amiajnl-2014-002794. Epub 2014 Jul 18.
8
VarioML framework for comprehensive variation data representation and exchange.
BMC Bioinformatics. 2012 Oct 3;13:254. doi: 10.1186/1471-2105-13-254.

本文引用的文献

1
LOVD v.2.0: the next generation in gene variant databases.
Hum Mutat. 2011 May;32(5):557-63. doi: 10.1002/humu.21438. Epub 2011 Feb 22.
2
Describing structural changes by extending HGVS sequence variation nomenclature.
Hum Mutat. 2011 May;32(5):507-11. doi: 10.1002/humu.21427. Epub 2011 Mar 15.
4
EnzyMiner: automatic identification of protein level mutations and their impact on target enzymes from PubMed abstracts.
BMC Bioinformatics. 2009 Aug 27;10 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-10-S8-S2.
5
Between proteins and phenotypes: annotation and interpretation of mutations.
BMC Bioinformatics. 2009 Aug 27;10 Suppl 8(Suppl 8):I1. doi: 10.1186/1471-2105-10-S8-I1.
6
GoGene: gene annotation in the fast lane.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W300-4. doi: 10.1093/nar/gkp429. Epub 2009 May 22.
7
Linking genes to literature: text mining, information extraction, and retrieval applications for biology.
Genome Biol. 2008;9 Suppl 2(Suppl 2):S8. doi: 10.1186/gb-2008-9-s2-s8. Epub 2008 Sep 1.
9
A workflow for mutation extraction and structure annotation.
J Bioinform Comput Biol. 2007 Dec;5(6):1319-37. doi: 10.1142/s0219720007003119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验