Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, E-43007 Tarragona, Spain.
Inorg Chem. 2011 Nov 7;50(21):11134-42. doi: 10.1021/ic201686c. Epub 2011 Oct 12.
The geometry and electronic structure of cis-Ru(II)(bpy)(2)(H(2)O)(2) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-Ru(IV)(bpy)(2)(OH)(2) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-Ru(V)(bpy)(2)(O)(OH) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-Ru(II)(bpy)(2)(H(2)O)(2) to its trans-Ru(II)(bpy)(2)(H(2)O)(2) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.
顺式-Ru(II)(bpy)(2)(H(2)O)(2)及其高氧化态物种(形式上高达 Ru(VI))的几何形状和电子结构已通过 UV-vis、EPR、XAS 和 DFT 和 CASSCF/CASPT2 计算进行了研究。这些物种的分子结构的 DFT 计算表明,随着氧化态的增加,Ru-O 键距离减小,表明 Ru-O 多重键的程度增加。此外,随着氧化态的增加,O-Ru-O 价键角增大。EPR 光谱和量子化学计算表明,所有氧化态都有利于低自旋构型。因此,顺式-Ru(IV)(bpy)(2)(OH)(2)(d(4))具有单重态基态,在低温下 EPR 静默,而顺式-Ru(V)(bpy)(2)(O)(OH)(d(3))具有二重态基态。更高氧化态物种的 XAS 光谱和 DFT 计算进一步阐明了这些配合物的电子结构,特别是 O-Ru-O 片段的共价性质。此外,顺式-Ru(II)(bpy)(2)(H(2)O)(2)向其反式-Ru(II)(bpy)(2)(H(2)O)(2)异构体的光化学异构化已通过量子化学计算得到充分表征。激发态过程预计涉及一个水配体的去配位,这导致配位不饱和的配合物发生结构重排,然后水重新配位生成反式异构体。