Center for Translational Medicine, the Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Circ Res. 2011 Dec 9;109(12):1401-9. doi: 10.1161/CIRCRESAHA.111.255695. Epub 2011 Oct 13.
Despite intense interest in strategies to predict which kinase inhibitor (KI) cancer therapeutics may be associated with cardiotoxicity, current approaches are inadequate. Sorafenib is a KI of concern because it inhibits growth factor receptors and Raf-1/B-Raf, kinases that are upstream of extracellular signal-regulated kinases (ERKs) and signal cardiomyocyte survival in the setting of stress.
To explore the potential use of zebrafish as a preclinical model to predict cardiotoxicity and to determine whether sorafenib has associated cardiotoxicity, and, if so, define the mechanisms.
We find that the zebrafish model is readily able to discriminate a KI with little or no cardiotoxicity (gefitinib) from one with demonstrated cardiotoxicity (sunitinib). Sorafenib, like sunitinib, leads to cardiomyocyte apoptosis, a reduction in total myocyte number per heart, contractile dysfunction, and ventricular dilatation in zebrafish. In cultured rat cardiomyocytes, sorafenib induces cell death. This can be rescued by adenovirus-mediated gene transfer of constitutively active MEK1, which restores ERK activity even in the presence of sorafenib. Whereas growth factor-induced activation of ERKs requires Raf, α-adrenergic agonist-induced activation of ERKs does not require it. Consequently, activation of α-adrenergic signaling markedly decreases sorafenib-induced cell death. Consistent with these in vitro data, inhibition of α-adrenergic signaling with the receptor antagonist prazosin worsens sorafenib-induced cardiomyopathy in zebrafish.
Zebrafish may be a valuable preclinical tool to predict cardiotoxicity. The α-adrenergic signaling pathway is an important modulator of sorafenib cardiotoxicity in vitro and in vivo and appears to act through a here-to-fore unrecognized signaling pathway downstream of α-adrenergic activation that bypasses Raf to activate ERKs.
尽管人们对预测哪种激酶抑制剂(KI)癌症治疗药物可能与心脏毒性相关的策略非常感兴趣,但目前的方法还不够完善。索拉非尼是一种令人关注的 KI,因为它抑制生长因子受体和 Raf-1/B-Raf,这些激酶是细胞外信号调节激酶(ERK)和应激信号心肌细胞存活的上游激酶。
探索使用斑马鱼作为临床前模型预测心脏毒性的潜力,并确定索拉非尼是否具有相关的心脏毒性,如果有,确定其机制。
我们发现,斑马鱼模型能够很容易地区分几乎没有或没有心脏毒性的 KI(吉非替尼)和具有已知心脏毒性的 KI(舒尼替尼)。索拉非尼与舒尼替尼一样,导致斑马鱼的心肌细胞凋亡、心脏内总心肌细胞数量减少、收缩功能障碍和心室扩张。在培养的大鼠心肌细胞中,索拉非尼诱导细胞死亡。这种细胞死亡可以通过腺病毒介导的组成型激活 MEK1 的基因转移来挽救,即使在存在索拉非尼的情况下,也能恢复 ERK 活性。而生长因子诱导的 ERK 激活需要 Raf,α-肾上腺素能激动剂诱导的 ERK 激活则不需要。因此,α-肾上腺素能信号的激活显著降低了索拉非尼诱导的细胞死亡。与这些体外数据一致,用受体拮抗剂普萘洛尔抑制α-肾上腺素能信号会加重斑马鱼中索拉非尼诱导的心肌病。
斑马鱼可能是一种有价值的临床前工具,可用于预测心脏毒性。α-肾上腺素能信号通路是体外和体内索拉非尼心脏毒性的重要调节剂,它似乎通过一种以前未被认识的α-肾上腺素能激活下游信号通路发挥作用,该通路绕过 Raf 激活 ERK。