Biomedical Department of Internal and Specialty Medicine (Di.Bi.Mi.S.), Heart Failure Out-Patients Clinic, A.O.U. Policlinico Paolo Giaccone, University of Palermo, Piazza delle Cliniche 2, Palermo, Italy.
Intern Emerg Med. 2011 Oct;6 Suppl 1:29-36. doi: 10.1007/s11739-011-0674-8.
In chronic heart failure (CHF), neurohumoral systems, which help to maintain circulatory homeostasis, are maladaptive and responsible for disease progression and congestion in the long term. The activation of sympathetic hormones and renin-angiotensin-aldosterone system (RAAS), in addition to non-osmotic vasopressin release, up-regulation of aquoporine 2 and renal sodium transporters, and renal resistance to natriuretic peptide lead to a salt- and water-avid state. A primary decrease in cardiac output and arterial vasodilatation brings about arterial underfilling, which activates neuro-humoral reflexes and systems. The heart disease is the primum movens, but the kidney is the end organ responsible for increased tubular reabsorption of sodium and water. The most important hemodynamic alteration in the kidneys is constriction of glomerular efferent arterioles, which increases intraglomerular pressure and hence glomerular filtration rate. The resulting changes in intrarenal oncotic and hydrostatic pressures promote tubular reabsorption. Over time, a gradually falling glomerular filtration rate, due to CHF progression, medications or chronic kidney injury due to comorbidities, becomes more critical in sodium/water imbalance. Moreover, long-term use of diuretics can lead to a diuretic-resistant state, which necessitates the use of higher doses further activating RAAS, often at the expense of worsening renal function. However, every patient is a case in itself and the general pathophysiology of hydro-saline balance may be different in each subject. A mechanism can prevail over others and the kidney may have different responses to the same diuretic. So, it is necessary to customize each individual's long-term therapy, tailoring medical treatment according to clinical profiles, comorbidities and renal function, introducing active control of body weight by the patient himself, fluid restriction, a less restricted sodium intake, flexibility of diuretic doses, early and personalized ambulatory follow-up, and congestion monitoring by bioelectrical impedance vector analysis, BNP, inferior vena cava ultrasonography or echocardiographic e/e(1) ratio or pulmonary capillary wedge pressure.
在慢性心力衰竭(CHF)中,帮助维持循环内稳态的神经激素系统会发生适应性不良,从而导致疾病进展和长期充血。交感激素和肾素-血管紧张素-醛固酮系统(RAAS)的激活,除了非渗透性血管加压素的释放、水通道蛋白 2 和肾钠转运体的上调以及肾对利钠肽的抵抗,导致盐和水的摄取增加。心输出量的最初减少和动脉血管舒张导致动脉充盈不足,从而激活神经激素反射和系统。心脏疾病是首要原因,但肾脏是负责增加肾小管对钠和水重吸收的终末器官。肾脏中最重要的血流动力学改变是肾小球传出小动脉的收缩,这会增加肾小球内压,从而增加肾小球滤过率。由此产生的肾内胶体渗透压和静水压力的变化促进了肾小管的重吸收。随着时间的推移,由于 CHF 进展、药物治疗或合并症引起的慢性肾脏损伤,肾小球滤过率逐渐下降,在钠/水失衡中变得更加关键。此外,长期使用利尿剂会导致利尿剂抵抗状态,这需要使用更高剂量的利尿剂进一步激活 RAAS,这通常会以恶化肾功能为代价。然而,每个患者都是一个独立的病例,水盐平衡的一般病理生理学在每个患者中可能不同。一种机制可能会占主导地位,而肾脏对相同利尿剂的反应可能不同。因此,有必要为每个患者定制长期治疗方案,根据临床特征、合并症和肾功能调整药物治疗,引入患者自身对体重的主动控制、限制液体摄入、限制钠的摄入、调整利尿剂剂量的灵活性、早期和个性化的门诊随访以及通过生物电阻抗向量分析、BNP、下腔静脉超声或超声心动图 e/e(1)比值或肺毛细血管楔压监测充血情况。