Suppr超能文献

为医学应用中基于心电图的年龄分类开发贝叶斯分类器。

Evolving a Bayesian Classifier for ECG-based Age Classification in Medical Applications.

作者信息

Wiggins M, Saad A, Litt B, Vachtsevanos G

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Appl Soft Comput. 2008 Jan;8(1):599-608. doi: 10.1016/j.asoc.2007.03.009.

Abstract

OBJECTIVE

To classify patients by age based upon information extracted from their electro-cardiograms (ECGs). To develop and compare the performance of Bayesian classifiers. METHODS AND MATERIAL: We present a methodology for classifying patients according to statistical features extracted from their ECG signals using a genetically evolved Bayesian network classifier. Continuous signal feature variables are converted to a discrete symbolic form by thresholding, to lower the dimensionality of the signal. This simplifies calculation of conditional probability tables for the classifier, and makes the tables smaller. Two methods of network discovery from data were developed and compared: the first using a greedy hill-climb search and the second employed evolutionary computing using a genetic algorithm (GA). RESULTS AND CONCLUSIONS: The evolved Bayesian network performed better (86.25% AUC) than both the one developed using the greedy algorithm (65% AUC) and the naïve Bayesian classifier (84.75% AUC). The methodology for evolving the Bayesian classifier can be used to evolve Bayesian networks in general thereby identifying the dependencies among the variables of interest. Those dependencies are assumed to be non-existent by naïve Bayesian classifiers. Such a classifier can then be used for medical applications for diagnosis and prediction purposes.

摘要

目的

根据从心电图(ECG)中提取的信息对患者进行年龄分类。开发并比较贝叶斯分类器的性能。方法和材料:我们提出了一种使用遗传进化贝叶斯网络分类器根据从ECG信号中提取的统计特征对患者进行分类的方法。通过阈值处理将连续信号特征变量转换为离散符号形式,以降低信号的维度。这简化了分类器条件概率表的计算,并使表更小。开发并比较了两种从数据中发现网络的方法:第一种使用贪婪爬山搜索,第二种使用遗传算法(GA)进行进化计算。结果与结论:进化后的贝叶斯网络(曲线下面积[AUC]为86.25%)比使用贪婪算法开发的网络(AUC为65%)和朴素贝叶斯分类器(AUC为84.75%)表现更好。一般来说,进化贝叶斯分类器的方法可用于进化贝叶斯网络,从而识别感兴趣变量之间的依赖关系。朴素贝叶斯分类器假定这些依赖关系不存在。这样的分类器随后可用于医疗应用中的诊断和预测目的。

相似文献

1
Evolving a Bayesian Classifier for ECG-based Age Classification in Medical Applications.
Appl Soft Comput. 2008 Jan;8(1):599-608. doi: 10.1016/j.asoc.2007.03.009.
2
Stochastic margin-based structure learning of Bayesian network classifiers.
Pattern Recognit. 2013 Feb;46(2):464-471. doi: 10.1016/j.patcog.2012.08.007.
3
Structure Learning of Bayesian Network Based on Adaptive Thresholding.
Entropy (Basel). 2019 Jul 8;21(7):665. doi: 10.3390/e21070665.
4
Continuous time Bayesian network classifiers.
J Biomed Inform. 2012 Dec;45(6):1108-19. doi: 10.1016/j.jbi.2012.07.002. Epub 2012 Jul 28.
6
Using Kinect to classify Parkinson's disease stages related to severity of gait impairment.
BMC Bioinformatics. 2018 Dec 10;19(1):471. doi: 10.1186/s12859-018-2488-4.
7
Developing a framework for classifying water lead levels at private drinking water systems: A Bayesian Belief Network approach.
Water Res. 2021 Feb 1;189:116641. doi: 10.1016/j.watres.2020.116641. Epub 2020 Nov 16.
9
A Bayesian network classification methodology for gene expression data.
J Comput Biol. 2004;11(4):581-615. doi: 10.1089/cmb.2004.11.581.

引用本文的文献

1
Electrocardiogram classification using TSST-based spectrogram and ConViT.
Front Cardiovasc Med. 2022 Oct 10;9:983543. doi: 10.3389/fcvm.2022.983543. eCollection 2022.
2
Classification of ECG signals using multi-cumulants based evolutionary hybrid classifier.
Sci Rep. 2021 Jul 23;11(1):15092. doi: 10.1038/s41598-021-94363-6.
3
Machine Learning for Predicting the 3-Year Risk of Incident Diabetes in Chinese Adults.
Front Public Health. 2021 Jun 29;9:626331. doi: 10.3389/fpubh.2021.626331. eCollection 2021.
4
Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography.
Comput Math Methods Med. 2016;2016:2041467. doi: 10.1155/2016/2041467. Epub 2016 Apr 24.

本文引用的文献

1
An arrhythmia classification system based on the RR-interval signal.
Artif Intell Med. 2005 Mar;33(3):237-50. doi: 10.1016/j.artmed.2004.03.007.
2
A Bayesian approach to joint feature selection and classifier design.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1105-11. doi: 10.1109/TPAMI.2004.55.
3
Nonlinear processing and analysis of ECG data.
Technol Health Care. 2004;12(1):1-9.
4
Postoperative atrial fibrillation: a billion-dollar problem.
J Am Coll Cardiol. 2004 Mar 17;43(6):1001-3. doi: 10.1016/j.jacc.2003.12.033.
5
Increases in P-wave dispersion predict postoperative atrial fibrillation after coronary artery bypass graft surgery.
Anesth Analg. 2004 Feb;98(2):303-310. doi: 10.1213/01.ANE.0000096195.47734.2F.
6
Automatic recognition of electrocardiographic waves by digital computer.
Circ Res. 1961 Nov;9:1138-43. doi: 10.1161/01.res.9.6.1138.
8
The principles of software QRS detection.
IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):42-57. doi: 10.1109/51.993193.
9
An ischemia detection method based on artificial neural networks.
Artif Intell Med. 2002 Feb;24(2):167-78. doi: 10.1016/s0933-3657(01)00100-2.
10
An interactive framework for an analysis of ECG signals.
Artif Intell Med. 2002 Feb;24(2):109-32. doi: 10.1016/s0933-3657(01)00096-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验