Shan Liang
National Center for Biotechnology Information, NLM, NIH
The Ga-labeled homoalanine derivatives of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) and 1,4,7,10-tetraazacyclododecane-1,4,7,-triacetic acid (DO3A), abbreviated as Ga-23 and Ga-24, respectively, were synthesized by Shetty et al. for positron emission tomography (PET) of cancer cells (1). Radiolabeled amino acids represent a diverse class of tracers that target the increased amino acid transport in cancer cells (2, 3). To date, >20 distinct amino acid transporters have been identified in mammalian cells, and these transporters differ in terms of substrate specificity, tissue expression patterns, sodium and other ion dependence, pH sensitivity, and transport mechanism (4, 5). Because of increased demand for amino acids in malignant cells, some transporters have been shown to be overexpressed in different types of tumors, and the process of amino acid transport is relatively fast (2, 6, 7). These features make tumor imaging with amino acid tracers possible within 20 min. Indeed, there is growing evidence that radiolabeled amino acids have the potential to overcome some of the limitations of 2-deoxy-2-[F]fluoro-d-glucose ([F]FDG) in tumor imaging, especially in the imaging of primary and recurrent brain tumors, neuroendocrine tumors, and prostate cancers (2, 3, 8). Different studies also showed that radiotracers that target different amino acid transporters exhibit different imaging properties that may provide unique biological information of tumors (1, 2, 7). The first group of widely investigated amino acids is the analogs of phenylalanine and tyrosine (2, 3). Because of their bulky neutral side chains, these natural amino acids are the substrates of system L transporters and have been proven to be useful for tumor imaging, particularly for brain tumors. The limitation common to most of the natural amino acids is the susceptibility to metabolism, which decreases tumor specificity and complicates kinetic analysis. Because none of the natural amino acids contain fluorine or iodine, labeling with fluorine-18 or iodine-123 can alter the biochemistry of the amino acids. These shortcomings associated with natural amino acids can be partially overcome by using non-natural amino acids. Typically, non-natural amino acids are neither metabolized nor readily incorporated into protein (2, 3, 7). One group of non-natural amino acids is á,á-dialkyl amino acids, which are generated by substituting the á-carbon hydrogen of natural amino acids with a methyl group or other alkyl chains. These amino acids are primarily the substrates of system A transporters. The second group is alicyclic amino acids, which are á,á-dialkyl amino acids with side chains bonded covalently to each other to form a cyclic ring. These amino acids are the substrates of system L transporters. The third group is non-natural proline derivatives, which exhibit different transport selectivity. One challenge in developing amino acid radiotracers is to overcome the low selectivity and the decreased recognition after radiolabeling to specific transporters (1-3). Another challenge is the low uptake of amino acid agents in tumors, which leads to less sensitivity for tumor detection than with [F]FDG (8). Shetty et al. synthesized a group of Ga-labeled alanine and lysine derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), DO2A, and DO3A (1, 7). The four bifunctional chelating agents have similar sizes, but they differ in the net charges because of the different numbers of pendent carboxylate arms. The amino acids have been conjugated to one of the carboxylate arms, and the nitrogen atoms in the heterocyclic ring are presumed to coordinate with metals to form chelates. Biodistribution studies and PET imaging indicate the structure–activity relationship of the amino acid derivatives, and the selective uptakes of these compounds by different cancer tissues might provide an insight on the different modes of amino acid uptake by cancer cells (1, 7). This chapter summarizes the data obtained with Ga-labeled homoalanine derivatives: Ga-23 (Ga-DO2A-homoalanine) and Ga-24 (Ga-DO3A-homoalanine). These homoalanine derivatives were comparatively analyzed with the corresponding alanine derivatives (Ga-21 and Ga-22, respectively) (1).
1,4,7,10-四氮杂环十二烷-1,7-二乙酸(DO2A)和1,4,7,10-四氮杂环十二烷-1,4,7-三乙酸(DO3A)的镓标记高丙氨酸衍生物,分别简称为Ga-23和Ga-24,由谢蒂等人合成,用于癌细胞的正电子发射断层扫描(PET)(1)。放射性标记的氨基酸代表了一类多样的示踪剂,可靶向癌细胞中增加的氨基酸转运(2,3)。迄今为止,在哺乳动物细胞中已鉴定出20多种不同的氨基酸转运蛋白,这些转运蛋白在底物特异性、组织表达模式、对钠和其他离子的依赖性、pH敏感性以及转运机制方面存在差异(4,5)。由于恶性细胞对氨基酸的需求增加,一些转运蛋白已被证明在不同类型的肿瘤中过度表达,并且氨基酸转运过程相对较快(2,6,7)。这些特性使得在20分钟内用氨基酸示踪剂进行肿瘤成像成为可能。事实上,越来越多的证据表明,放射性标记的氨基酸有可能克服2-脱氧-2-[F]氟-d-葡萄糖([F]FDG)在肿瘤成像中的一些局限性,特别是在原发性和复发性脑肿瘤、神经内分泌肿瘤和前列腺癌的成像中(2,3,8)。不同的研究还表明,靶向不同氨基酸转运蛋白的放射性示踪剂表现出不同的成像特性,可能提供肿瘤独特的生物学信息(1,2,7)。第一组被广泛研究的氨基酸是苯丙氨酸和酪氨酸的类似物(2,3)。由于它们庞大的中性侧链,这些天然氨基酸是L系统转运蛋白的底物,已被证明可用于肿瘤成像,特别是脑肿瘤。大多数天然氨基酸共有的局限性是易受代谢影响,这会降低肿瘤特异性并使动力学分析复杂化。由于天然氨基酸都不含氟或碘,用氟-18或碘-123标记会改变氨基酸的生物化学性质。使用非天然氨基酸可以部分克服与天然氨基酸相关的这些缺点。通常,非天然氨基酸既不被代谢也不容易掺入蛋白质中(2,3,7)。一类非天然氨基酸是α,α-二烷基氨基酸,它们是通过用甲基或其他烷基链取代天然氨基酸的α-碳氢原子而产生的。这些氨基酸主要是A系统转运蛋白的底物。第二组是脂环族氨基酸,它们是α,α-二烷基氨基酸,其侧链彼此共价键合形成一个环。这些氨基酸是L系统转运蛋白的底物。第三组是非天然脯氨酸衍生物,它们表现出不同的转运选择性。开发氨基酸放射性示踪剂的一个挑战是克服低选择性以及放射性标记后对特定转运蛋白的识别降低(1-3)。另一个挑战是氨基酸制剂在肿瘤中的摄取较低,这导致与[F]FDG相比肿瘤检测的灵敏度较低(8)。谢蒂等人合成了一组1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)、1,4,7,10-四氮杂环十二烷-1,4,7,10-四乙酸(DOTA)、DO2A和DO3A的镓标记丙氨酸和赖氨酸衍生物(1,7)。这四种双功能螯合剂大小相似,但由于侧链羧酸酯臂的数量不同,它们的净电荷不同。氨基酸已与其中一个羧酸酯臂缀合,并且杂环中的氮原子被认为与金属配位形成螯合物。生物分布研究和PET成像表明了氨基酸衍生物的构效关系,并且这些化合物在不同癌组织中的选择性摄取可能为癌细胞摄取氨基酸的不同模式提供见解(1,7)。本章总结了用镓标记的高丙氨酸衍生物:Ga-23(Ga-DO2A-高丙氨酸)和Ga-24(Ga-DO3A-高丙氨酸)获得的数据。这些高丙氨酸衍生物分别与相应的丙氨酸衍生物(分别为Ga-21和Ga-22)进行了比较分析(1)。