Benítez-Parejo N, Rodríguez del Águila M M, Pérez-Vicente S
CIBER de Epidemiología y Salud Pública, Unidad de Investigación y Evaluación, Agencia Pública Empresarial Sanitaria Costa del Sol. Marbella, Málaga, Spain.
Allergol Immunopathol (Madr). 2011 Nov-Dec;39(6):362-73. doi: 10.1016/j.aller.2011.07.007. Epub 2011 Oct 19.
The data provided by clinical trials are often expressed in terms of survival. The analysis of survival comprises a series of statistical analytical techniques in which the measurements analysed represent the time elapsed between a given exposure and the outcome of a certain event. Despite the name of these techniques, the outcome in question does not necessarily have to be either survival or death, and may be healing versus no healing, relief versus pain, complication versus no complication, relapse versus no relapse, etc. The present article describes the analysis of survival from both a descriptive perspective, based on the Kaplan-Meier estimation method, and in terms of bivariate comparisons using the log-rank statistic. Likewise, a description is provided of the Cox regression models for the study of risk factors or covariables associated to the probability of survival. These models are defined in both simple and multiple forms, and a description is provided of how they are calculated and how the postulates for application are checked - accompanied by illustrating examples with the shareware application R.
临床试验提供的数据通常以生存情况来表示。生存分析包括一系列统计分析技术,其中所分析的测量值代表给定暴露与某一特定事件结果之间经过的时间。尽管这些技术有这样的名称,但所讨论的结果不一定非得是生存或死亡,也可能是治愈与未治愈、缓解与疼痛、并发症与无并发症、复发与无复发等。本文从描述性角度,基于Kaplan-Meier估计方法,以及使用对数秩统计量进行双变量比较这两个方面来描述生存分析。同样,还介绍了用于研究与生存概率相关的危险因素或协变量的Cox回归模型。这些模型有简单形式和多重形式,并说明了它们是如何计算的以及如何检验应用的假设——同时还通过免费软件应用程序R给出了示例说明。