El-Shewy Hesham M, Abdel-Samie Souzan A, Al Qalam Abdelmohsen M, Lee Mi-Hye, Kitatani Kazuyuki, Anelli Viviana, Jaffa Ayad A, Obeid Lina M, Luttrell Louis M
Departments of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
Mol Endocrinol. 2011 Dec;25(12):2144-56. doi: 10.1210/me.2011-0101. Epub 2011 Oct 20.
We recently reported that IGF-II binding to the IGF-II/mannose-6-phosphate (M6P) receptor activates the ERK1/2 cascade by triggering sphingosine kinase 1 (SK1)-dependent transactivation of G protein-coupled sphingosine 1-phosphate (S1P) receptors. Here, we investigated the mechanism of IGF-II/M6P receptor-dependent sphingosine kinase 1 (SK1) activation in human embryonic kidney 293 cells. Pretreating cells with protein kinase C (PKC) inhibitor, bisindolylmaleimide-I, abolished IGF-II-stimulated translocation of green fluorescent protein (GFP)-tagged SK1 to the plasma membrane and activation of endogenous SK1, implicating PKC as an upstream regulator of SK1. Using confocal microscopy to examine membrane translocation of GFP-tagged PKCα, β1, β2, δ, and ζ, we found that IGF-II induced rapid, transient, and isoform-specific translocation of GFP-PKCβ2 to the plasma membrane. Immunoblotting of endogenous PKC phosphorylation confirmed PKCβ2 activation in response to IGF-II. Similarly, IGF-II stimulation caused persistent membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, which does not dissociate from the membrane after translocation. IGF-II stimulation increased diacylglycerol (DAG) levels, the established activator of classical PKC. Interestingly, the polyunsaturated fraction of DAG was increased, indicating involvement of phosphatidyl inositol/phospholipase C (PLC). Pretreating cells with the PLC inhibitor, U73122, attenuated IGF-II-dependent DAG production and PKCβ2 phosphorylation, blocked membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, and reduced sphingosine 1-phosphate production, suggesting that PLC/PKCβ2 are upstream regulators of SK1 in the pathway. Taken together, these data provide evidence that activation of PLC and PKCβ2 by the IGF-II/M6P receptor are required for the activation of SK1.
我们最近报道,胰岛素样生长因子-II(IGF-II)与IGF-II/甘露糖-6-磷酸(M6P)受体结合,通过触发鞘氨醇激酶1(SK1)依赖的G蛋白偶联鞘氨醇-1-磷酸(S1P)受体反式激活,激活细胞外信号调节激酶1/2(ERK1/2)级联反应。在此,我们研究了人胚肾293细胞中IGF-II/M6P受体依赖的鞘氨醇激酶1(SK1)激活机制。用蛋白激酶C(PKC)抑制剂双吲哚马来酰亚胺-I预处理细胞,消除了IGF-II刺激的绿色荧光蛋白(GFP)标记的SK1向质膜的转位以及内源性SK1的激活,这表明PKC是SK1的上游调节因子。利用共聚焦显微镜检查GFP标记的PKCα、β1、β2、δ和ζ的膜转位,我们发现IGF-II诱导GFP-PKCβ2快速、短暂且具有亚型特异性地转位至质膜。内源性PKC磷酸化的免疫印迹证实了IGF-II刺激下PKCβ2的激活。同样,IGF-II刺激导致激酶缺陷型GFP-PKCβ2(K371R)突变体持续的膜转位,该突变体转位后不会从膜上解离。IGF-II刺激增加了二酰甘油(DAG)水平,DAG是经典PKC的既定激活剂。有趣的是,DAG的多不饱和部分增加,表明磷脂酰肌醇/磷脂酶C(PLC)参与其中。用PLC抑制剂U73122预处理细胞,减弱了IGF-II依赖的DAG产生和PKCβ2磷酸化,阻断了激酶缺陷型GFP-PKCβ2(K371R)突变体的膜转位,并减少了鞘氨醇-1-磷酸的产生,这表明PLC/PKCβ2是该途径中SK1的上游调节因子。综上所述,这些数据提供了证据,表明IGF-II/M6P受体激活PLC和PKCβ2是激活SK1所必需的。