Suppr超能文献

具有部分随机交配的渐变群。

Clines with partial panmixia.

作者信息

Nagylaki Thomas

机构信息

Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.

出版信息

Theor Popul Biol. 2012 Feb;81(1):45-68. doi: 10.1016/j.tpb.2011.09.006. Epub 2011 Oct 10.

Abstract

In spatially distributed populations, global panmixia can be regarded as the limiting case of long-distance migration. The effect of incorporating partial panmixia into single-locus clines maintained by migration and selection is investigated. In a diallelic, two-deme model without dominance, partial panmixia can increase or decrease both the polymorphic area in the plane of the migration rates and the equilibrium gene-frequency difference between the two demes. For multiple alleles, under the assumptions that the number of demes is large and both migration and selection are arbitrary but weak, a system of integro-partial differential equations is derived. For two alleles with conservative migration, (i) a Lyapunov functional is found, suggesting generic global convergence of the gene frequency; (ii) conditions for the stability or instability of the fixation states, and hence for a protected polymorphism, are obtained; and (iii) a variational representation of the minimal selection-migration ratio λ(0) (the principal eigenvalue of the linearized system) for protection from loss is used to prove that λ(0) is an increasing function of the panmictic rate and to deduce the effect on λ(0) of changes in selection and migration. The unidimensional step-environment with uniform population density, homogeneous, isotropic migration, and no dominance is examined in detail: An explicit characteristic equation is derived for λ(0); bounds on λ(0) are established; and λ(0) is approximated in four limiting cases. An explicit formula is also deduced for the globally asymptotically stable cline in an unbounded habitat with a symmetric environment; partial panmixia maintains some polymorphism even as the distance from the center of the cline tends to infinity.

摘要

在空间分布的种群中,全局随机交配可被视为长距离迁移的极限情况。本文研究了将部分随机交配纳入由迁移和选择维持的单基因座渐变群的影响。在一个无显性的双等位基因、两个亚群模型中,部分随机交配既可以增加也可以减少迁移率平面上的多态区域以及两个亚群之间的平衡基因频率差异。对于多个等位基因,在亚群数量很大且迁移和选择都是任意但较弱的假设下,推导出了一个积分 - 偏微分方程组。对于具有保守迁移的两个等位基因,(i)找到了一个李雅普诺夫泛函,表明基因频率具有一般的全局收敛性;(ii)获得了固定状态稳定或不稳定的条件,从而得到了受保护多态性的条件;(iii)使用用于防止丢失的最小选择 - 迁移率λ(0)(线性化系统的主特征值)的变分表示来证明λ(0)是随机交配率的增函数,并推导选择和迁移变化对λ(0)的影响。详细研究了具有均匀种群密度、均匀、各向同性迁移且无显性的一维阶梯环境:为λ(0)推导了一个显式特征方程;建立了λ(0)的界限;并在四种极限情况下对λ(0)进行了近似。还推导了在具有对称环境的无界栖息地中全局渐近稳定渐变群的显式公式;即使从渐变群中心的距离趋于无穷大,部分随机交配仍能维持一些多态性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验