Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506-6102, USA.
Phys Chem Chem Phys. 2011 Dec 28;13(48):21262-72. doi: 10.1039/c1cp22361e. Epub 2011 Oct 26.
A coarse-grained approach with enhanced representation of amino acid (involving four components, i.e. a central alpha carbon and its side group along with C and N terminals) is used to study the multi-scale assembly of an antimicrobial peptide (KSL) in an explicit solvent (in a scale-down hierarchy of Eby et al. [Phys. Chem. Chem. Phys., 2011, 13, 1123-1130]). Both local (mobility, solvent-surrounding, energy profiles) and global (variation of the root mean square displacement of peptides and its gyration radius with time steps, radial distribution function, and structure factors) physical quantities are analyzed as a function of the solvent quality (i.e. the solvent-residue interaction strength). We find that the mobility of the interacting side group (lysine) decays as the number of its surrounding solvent constituents grows systematically on increasing the interaction strength. Pinning of lysine directs the underlying segmental conformation that propagates to larger scale scaffolding. The radial distribution function (a measure of the correlated peptide assembly) decays with the distance (faster with stronger solvent interaction). Scaling of the structure factor (S(q)) of peptide assembly with the wave vector q = 2π/λ (λ is the wavelength), S(q) ∝q(-1/ν) provides an insight into its multi-scale mass (N) distribution. The effective dimension D(e) = 1/ν of the peptide assembly over the spatial distribution (R) can be estimated using N∝R(D(e)). On scales larger than the size (i.e. the radius of gyration R(g)) of the peptide, D(e) ≈ 1.303 ± 0.070 to D(e) ≈ 1.430 ± 0.096, a rather fibrous morphology appears perhaps due to directed pinning while the morphology appears like an ideal chain, D(e) ≈ 1.809 ± 0.017 to D(e) ≈ 1.978 ± 0.017, at a smaller scale R≤R(g).
采用增强氨基酸表示(涉及四个组件,即中央α碳及其侧基以及 C 和 N 末端)的粗粒度方法来研究抗菌肽(KSL)在显溶剂中的多尺度组装(在 Eby 等人的尺度降低层次结构中 [Phys. Chem. Chem. Phys., 2011, 13, 1123-1130])。作为溶剂质量(即溶剂-残基相互作用强度)的函数,分析了局部(流动性、溶剂包围、能量分布)和全局(随时间步长变化的肽的均方根位移及其旋回半径、径向分布函数和结构因子)物理量。我们发现,随着相互作用侧基(赖氨酸)周围溶剂成分数量的系统增加,其流动性会衰减。赖氨酸的固定指向传播到更大规模支架的基础节段构象。径向分布函数(衡量相关肽组装的指标)随距离衰减(溶剂相互作用越强,衰减越快)。肽组装结构因子(S(q))随波矢 q = 2π/λ(λ是波长)的标度,S(q)∝q(-1/ν)提供了其多尺度质量(N)分布的见解。肽组装的有效维数 D(e) = 1/ν可以通过 N∝R(D(e))来估计,其中 R 是空间分布。在大于肽尺寸(即旋回半径 R(g))的尺度上,D(e)≈1.303±0.070 到 D(e)≈1.430±0.096,出现了一种类似纤维的形态,这可能是由于定向固定,而在较小的尺度 R≤R(g)上,形态看起来像理想的链,D(e)≈1.809±0.017 到 D(e)≈1.978±0.017。