Suppr超能文献

通过集成稀疏提升识别癌症基因组标记物。

Identification of cancer genomic markers via integrative sparse boosting.

机构信息

Department of Statistics, Penn State University, 301 Thomas Building, State College, PA 16801, USA.

出版信息

Biostatistics. 2012 Jul;13(3):509-22. doi: 10.1093/biostatistics/kxr033. Epub 2011 Oct 31.

Abstract

In high-throughput cancer genomic studies, markers identified from the analysis of single data sets often suffer a lack of reproducibility because of the small sample sizes. An ideal solution is to conduct large-scale prospective studies, which are extremely expensive and time consuming. A cost-effective remedy is to pool data from multiple comparable studies and conduct integrative analysis. Integrative analysis of multiple data sets is challenging because of the high dimensionality of genomic measurements and heterogeneity among studies. In this article, we propose a sparse boosting approach for marker identification in integrative analysis of multiple heterogeneous cancer diagnosis studies with gene expression measurements. The proposed approach can effectively accommodate the heterogeneity among multiple studies and identify markers with consistent effects across studies. Simulation shows that the proposed approach has satisfactory identification results and outperforms alternatives including an intensity approach and meta-analysis. The proposed approach is used to identify markers of pancreatic cancer and liver cancer.

摘要

在高通量癌症基因组研究中,由于样本量小,从单一数据集分析中识别出的标记往往缺乏可重复性。理想的解决方案是进行大规模的前瞻性研究,但这非常昂贵且耗时。一种经济有效的补救方法是汇集来自多个可比研究的数据并进行综合分析。由于基因组测量的高维度和研究之间的异质性,对多个数据集进行综合分析具有挑战性。在本文中,我们提出了一种稀疏提升方法,用于对具有基因表达测量的多个异质癌症诊断研究的综合分析中的标记进行识别。所提出的方法可以有效地适应多个研究之间的异质性,并识别出在多个研究中具有一致效果的标记。模拟表明,所提出的方法具有令人满意的识别结果,优于包括强度方法和荟萃分析在内的替代方法。所提出的方法用于识别胰腺癌和肝癌的标志物。

相似文献

1
Identification of cancer genomic markers via integrative sparse boosting.
Biostatistics. 2012 Jul;13(3):509-22. doi: 10.1093/biostatistics/kxr033. Epub 2011 Oct 31.
2
Integrative analysis and variable selection with multiple high-dimensional data sets.
Biostatistics. 2011 Oct;12(4):763-75. doi: 10.1093/biostatistics/kxr004. Epub 2011 Mar 16.
3
Integrative prescreening in analysis of multiple cancer genomic studies.
BMC Bioinformatics. 2012 Jul 16;13:168. doi: 10.1186/1471-2105-13-168.
4
Identification of breast cancer prognosis markers using integrative sparse boosting.
Methods Inf Med. 2012;51(2):152-61. doi: 10.3414/ME11-02-0019. Epub 2012 Feb 20.
5
Integrative analysis of multiple cancer genomic datasets under the heterogeneity model.
Stat Med. 2013 Sep 10;32(20):3509-21. doi: 10.1002/sim.5780. Epub 2013 Mar 21.
6
Promoting similarity of model sparsity structures in integrative analysis of cancer genetic data.
Stat Med. 2017 Feb 10;36(3):509-559. doi: 10.1002/sim.7138. Epub 2016 Sep 25.
7
Identification of Breast Cancer Prognosis Markers via Integrative Analysis.
Comput Stat Data Anal. 2012 Sep 1;56(9):2718-2728. doi: 10.1016/j.csda.2012.02.017.
8
Gene network-based cancer prognosis analysis with sparse boosting.
Genet Res (Camb). 2012 Aug;94(4):205-21. doi: 10.1017/S0016672312000419.
9
Integrative analysis of multiple cancer prognosis studies with gene expression measurements.
Stat Med. 2011 Dec 10;30(28):3361-71. doi: 10.1002/sim.4337. Epub 2011 Aug 25.
10
Regularized gene selection in cancer microarray meta-analysis.
BMC Bioinformatics. 2009 Jan 1;10:1. doi: 10.1186/1471-2105-10-1.

引用本文的文献

1
Integrative analysis of high-dimensional quantile regression with contrasted penalization.
J Appl Stat. 2024 Dec 10;52(9):1760-1776. doi: 10.1080/02664763.2024.2438799. eCollection 2025.
2
High-dimensional integrative copula discriminant analysis for multiomics data.
Stat Med. 2020 Dec 30;39(30):4869-4884. doi: 10.1002/sim.8758. Epub 2020 Oct 15.
3
Integrative sparse partial least squares.
Stat Med. 2021 Apr;40(9):2239-2256. doi: 10.1002/sim.8900. Epub 2021 Feb 8.
4
An integrative sparse boosting analysis of cancer genomic commonality and difference.
Stat Methods Med Res. 2020 May;29(5):1325-1337. doi: 10.1177/0962280219859026. Epub 2019 Jul 7.
5
Network-based logistic regression integration method for biomarker identification.
BMC Syst Biol. 2018 Dec 31;12(Suppl 9):135. doi: 10.1186/s12918-018-0657-8.
6
Integrative sparse principal component analysis of gene expression data.
Genet Epidemiol. 2017 Dec;41(8):844-865. doi: 10.1002/gepi.22089. Epub 2017 Nov 8.
7
Promoting similarity of model sparsity structures in integrative analysis of cancer genetic data.
Stat Med. 2017 Feb 10;36(3):509-559. doi: 10.1002/sim.7138. Epub 2016 Sep 25.
8
Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization.
Scand Stat Theory Appl. 2014 Mar 1;41(1):87-103. doi: 10.1111/j.1467-9469.2012.00816.x.
9
Integrative analysis of high-throughput cancer studies with contrasted penalization.
Genet Epidemiol. 2014 Feb;38(2):144-51. doi: 10.1002/gepi.21781. Epub 2014 Jan 6.
10
Sparse group penalized integrative analysis of multiple cancer prognosis datasets.
Genet Res (Camb). 2013 Jun;95(2-3):68-77. doi: 10.1017/S0016672313000086.

本文引用的文献

1
Regularized gene selection in cancer microarray meta-analysis.
BMC Bioinformatics. 2009 Jan 1;10:1. doi: 10.1186/1471-2105-10-1.
2
Meta-analysis combines affymetrix microarray results across laboratories.
Comp Funct Genomics. 2005;6(3):116-22. doi: 10.1002/cfg.460.
3
Merging two gene-expression studies via cross-platform normalization.
Bioinformatics. 2008 May 1;24(9):1154-60. doi: 10.1093/bioinformatics/btn083. Epub 2008 Mar 5.
5
Patterns of somatic mutation in human cancer genomes.
Nature. 2007 Mar 8;446(7132):153-8. doi: 10.1038/nature05610.
7
BagBoosting for tumor classification with gene expression data.
Bioinformatics. 2004 Dec 12;20(18):3583-93. doi: 10.1093/bioinformatics/bth447. Epub 2004 Oct 5.
9
Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9309-14. doi: 10.1073/pnas.0401994101. Epub 2004 Jun 7.
10
Integrative analysis of multiple gene expression profiles applied to liver cancer study.
FEBS Lett. 2004 May 7;565(1-3):93-100. doi: 10.1016/j.febslet.2004.03.081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验