Suppr超能文献

通过集成稀疏提升识别癌症基因组标记物。

Identification of cancer genomic markers via integrative sparse boosting.

机构信息

Department of Statistics, Penn State University, 301 Thomas Building, State College, PA 16801, USA.

出版信息

Biostatistics. 2012 Jul;13(3):509-22. doi: 10.1093/biostatistics/kxr033. Epub 2011 Oct 31.

Abstract

In high-throughput cancer genomic studies, markers identified from the analysis of single data sets often suffer a lack of reproducibility because of the small sample sizes. An ideal solution is to conduct large-scale prospective studies, which are extremely expensive and time consuming. A cost-effective remedy is to pool data from multiple comparable studies and conduct integrative analysis. Integrative analysis of multiple data sets is challenging because of the high dimensionality of genomic measurements and heterogeneity among studies. In this article, we propose a sparse boosting approach for marker identification in integrative analysis of multiple heterogeneous cancer diagnosis studies with gene expression measurements. The proposed approach can effectively accommodate the heterogeneity among multiple studies and identify markers with consistent effects across studies. Simulation shows that the proposed approach has satisfactory identification results and outperforms alternatives including an intensity approach and meta-analysis. The proposed approach is used to identify markers of pancreatic cancer and liver cancer.

摘要

在高通量癌症基因组研究中,由于样本量小,从单一数据集分析中识别出的标记往往缺乏可重复性。理想的解决方案是进行大规模的前瞻性研究,但这非常昂贵且耗时。一种经济有效的补救方法是汇集来自多个可比研究的数据并进行综合分析。由于基因组测量的高维度和研究之间的异质性,对多个数据集进行综合分析具有挑战性。在本文中,我们提出了一种稀疏提升方法,用于对具有基因表达测量的多个异质癌症诊断研究的综合分析中的标记进行识别。所提出的方法可以有效地适应多个研究之间的异质性,并识别出在多个研究中具有一致效果的标记。模拟表明,所提出的方法具有令人满意的识别结果,优于包括强度方法和荟萃分析在内的替代方法。所提出的方法用于识别胰腺癌和肝癌的标志物。

相似文献

1
Identification of cancer genomic markers via integrative sparse boosting.通过集成稀疏提升识别癌症基因组标记物。
Biostatistics. 2012 Jul;13(3):509-22. doi: 10.1093/biostatistics/kxr033. Epub 2011 Oct 31.
2
7
Identification of Breast Cancer Prognosis Markers via Integrative Analysis.通过综合分析鉴定乳腺癌预后标志物
Comput Stat Data Anal. 2012 Sep 1;56(9):2718-2728. doi: 10.1016/j.csda.2012.02.017.

引用本文的文献

3
Integrative sparse partial least squares.综合稀疏偏最小二乘法。
Stat Med. 2021 Apr;40(9):2239-2256. doi: 10.1002/sim.8900. Epub 2021 Feb 8.
4
An integrative sparse boosting analysis of cancer genomic commonality and difference.癌症基因组共性与差异的整合稀疏增强分析
Stat Methods Med Res. 2020 May;29(5):1325-1337. doi: 10.1177/0962280219859026. Epub 2019 Jul 7.
6
Integrative sparse principal component analysis of gene expression data.基因表达数据的整合稀疏主成分分析
Genet Epidemiol. 2017 Dec;41(8):844-865. doi: 10.1002/gepi.22089. Epub 2017 Nov 8.
8
Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization.采用复合惩罚的癌症诊断研究综合分析
Scand Stat Theory Appl. 2014 Mar 1;41(1):87-103. doi: 10.1111/j.1467-9469.2012.00816.x.

本文引用的文献

3
Merging two gene-expression studies via cross-platform normalization.通过跨平台标准化合并两项基因表达研究。
Bioinformatics. 2008 May 1;24(9):1154-60. doi: 10.1093/bioinformatics/btn083. Epub 2008 Mar 5.
7
BagBoosting for tumor classification with gene expression data.用于基于基因表达数据的肿瘤分类的BagBoosting算法
Bioinformatics. 2004 Dec 12;20(18):3583-93. doi: 10.1093/bioinformatics/bth447. Epub 2004 Oct 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验