Suppr超能文献

使用混合机理-神经网络速率函数模型估算生物膜反应动力学。

Estimating biofilm reaction kinetics using hybrid mechanistic-neural network rate function model.

机构信息

Chemical Engineering Sciences Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India.

出版信息

Bioresour Technol. 2012 Jan;103(1):300-8. doi: 10.1016/j.biortech.2011.10.006. Epub 2011 Oct 17.

Abstract

This work describes an alternative method for estimation of reaction rate of a biofilm process without using a model equation. A first principles model of the biofilm process is integrated with artificial neural networks to derive a hybrid mechanistic-neural network rate function model (HMNNRFM), and this combined model structure is used to estimate the complex kinetics of the biofilm process as a consequence of the validation of its steady state solution. The performance of the proposed methodology is studied with the aid of the experimental data of an anaerobic fixed bed biofilm reactor. The statistical significance of the method is also analyzed by means of the coefficient of determination (R2) and model efficiency (ME). The results demonstrate the effectiveness of HMNNRFM for estimating the complex kinetics of the biofilm process involved in the treatment of industry wastewater.

摘要

这项工作描述了一种替代方法,用于估算生物膜过程的反应速率,而无需使用模型方程。将生物膜过程的第一性原理模型与人工神经网络集成,得出混合机理神经网络速率函数模型(HMNNRFM),并通过验证其稳态解来使用这种组合模型结构来估算生物膜过程的复杂动力学。借助厌氧固定床生物膜反应器的实验数据研究了所提出方法的性能。还通过确定系数 (R2) 和模型效率 (ME) 来分析该方法的统计显著性。结果表明,HMNNRFM 可有效估算工业废水处理中涉及的生物膜过程的复杂动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验