Suppr超能文献

Sub1 和 RPA 在转录的不同阶段与 RNA 聚合酶 II 结合。

Sub1 and RPA associate with RNA polymerase II at different stages of transcription.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Mol Cell. 2011 Nov 4;44(3):397-409. doi: 10.1016/j.molcel.2011.09.013.

Abstract

Single-stranded DNA-binding proteins play many roles in nucleic acid metabolism, but their importance during transcription remains unclear. Quantitative proteomic analysis of RNA polymerase II (RNApII) preinitiation complexes (PICs) identified Sub1 and the replication protein A complex (RPA), both of which bind single-stranded DNA (ssDNA). Sub1, homolog of mammalian coactivator PC4, exhibits strong genetic interactions with factors necessary for promoter melting. Sub1 localizes near the transcription bubble in vitro and binds to promoters in vivo dependent upon PIC assembly. In contrast, RPA localizes to transcribed regions of active genes, strongly correlated with transcribing RNApII but independently of replication. RFA1 interacts genetically with transcription elongation factor genes. Interestingly, RPA levels increase at active promoters in cells carrying a Sub1 deletion or ssDNA-binding mutant, suggesting competition for a common binding site. We propose that Sub1 and RPA interact with the nontemplate strand of RNApII complexes during initiation and elongation, respectively.

摘要

单链 DNA 结合蛋白在核酸代谢中发挥多种作用,但它们在转录过程中的重要性尚不清楚。对 RNA 聚合酶 II(RNApII)起始前复合物(PIC)的定量蛋白质组学分析鉴定了 Sub1 和复制蛋白 A 复合物(RPA),它们都结合单链 DNA(ssDNA)。Sub1 是哺乳动物共激活因子 PC4 的同源物,与启动子解链所需的因子表现出强烈的遗传相互作用。Sub1 在体外定位于转录泡附近,并且依赖于 PIC 组装在体内结合启动子。相比之下,RPA 定位于活跃基因的转录区,与正在转录的 RNApII 强烈相关,但不依赖于复制。RFA1 与转录延伸因子基因在遗传上相互作用。有趣的是,在携带 Sub1 缺失或 ssDNA 结合突变体的细胞中,活跃启动子处的 RPA 水平增加,这表明它们竞争一个共同的结合位点。我们提出,Sub1 和 RPA 分别在起始和延伸过程中与 RNApII 复合物的非模板链相互作用。

相似文献

1
Sub1 and RPA associate with RNA polymerase II at different stages of transcription.
Mol Cell. 2011 Nov 4;44(3):397-409. doi: 10.1016/j.molcel.2011.09.013.
2
Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.
Mol Biol Cell. 2012 Nov;23(21):4297-312. doi: 10.1091/mbc.E12-04-0331. Epub 2012 Sep 12.
3
Sub1/PC4, a multifaceted factor: from transcription to genome stability.
Curr Genet. 2017 Dec;63(6):1023-1035. doi: 10.1007/s00294-017-0715-6. Epub 2017 May 31.
4
The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription.
EMBO J. 2005 Mar 9;24(5):1009-20. doi: 10.1038/sj.emboj.7600575. Epub 2005 Feb 3.
6
Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis.
Nucleic Acids Res. 2017 Mar 17;45(5):2458-2471. doi: 10.1093/nar/gkw1206.
7
The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein.
J Biol Chem. 2003 Jun 27;278(26):23410-7. doi: 10.1074/jbc.M302995200. Epub 2003 Apr 14.
8
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
Mol Cell Biol. 2010 Nov;30(21):5180-93. doi: 10.1128/MCB.00819-10. Epub 2010 Sep 7.
9
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.
Science. 2003 Jun 6;300(5625):1542-8. doi: 10.1126/science.1083430.

引用本文的文献

2
A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks.
PLoS Genet. 2025 Apr 1;21(4):e1011405. doi: 10.1371/journal.pgen.1011405. eCollection 2025 Apr.
3
The single-stranded DNA-binding factor SUB1/PC4 alleviates replication stress at telomeres and is a vulnerability of ALT cancer cells.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2419712122. doi: 10.1073/pnas.2419712122. Epub 2025 Jan 7.
4
An extrinsic motor directs chromatin loop formation by cohesin.
EMBO J. 2024 Oct;43(19):4173-4196. doi: 10.1038/s44318-024-00202-5. Epub 2024 Aug 19.
6
RNA structure profiling at single-cell resolution reveals new determinants of cell identity.
Nat Methods. 2024 Mar;21(3):411-422. doi: 10.1038/s41592-023-02128-y. Epub 2024 Jan 4.
8
A R-loop sensing pathway mediates the relocation of transcribed genes to nuclear pore complexes.
Nat Commun. 2023 Sep 20;14(1):5606. doi: 10.1038/s41467-023-41345-z.
10
An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters.
Genes Dev. 2022 Sep 1;36(17-18):985-1001. doi: 10.1101/gad.350026.122. Epub 2022 Oct 27.

本文引用的文献

1
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
EMBO J. 2011 Apr 6;30(7):1302-10. doi: 10.1038/emboj.2011.64. Epub 2011 Mar 8.
2
RNA polymerase and transcription elongation factor Spt4/5 complex structure.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):546-50. doi: 10.1073/pnas.1013828108. Epub 2010 Dec 27.
4
Online nanoflow RP-RP-MS reveals dynamics of multicomponent Ku complex in response to DNA damage.
J Proteome Res. 2010 Dec 3;9(12):6242-55. doi: 10.1021/pr1004696. Epub 2010 Oct 27.
5
Sub1 globally regulates RNA polymerase II C-terminal domain phosphorylation.
Mol Cell Biol. 2010 Nov;30(21):5180-93. doi: 10.1128/MCB.00819-10. Epub 2010 Sep 7.
6
RNA polymerase mapping during stress responses reveals widespread nonproductive transcription in yeast.
Genome Biol. 2010;11(7):R75. doi: 10.1186/gb-2010-11-7-r75. Epub 2010 Jul 16.
8
Sub1/PC4 a chromatin associated protein with multiple functions in transcription.
RNA Biol. 2010 May-Jun;7(3):287-90. doi: 10.4161/rna.7.3.11491. Epub 2010 May 9.
9
The origin recognition complex interacts with a subset of metabolic genes tightly linked to origins of replication.
PLoS Genet. 2009 Dec;5(12):e1000755. doi: 10.1371/journal.pgen.1000755. Epub 2009 Dec 4.
10
Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.
Science. 2010 Jan 8;327(5962):206-9. doi: 10.1126/science.1182015. Epub 2009 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验