Röhmel Joachim
Bremen Institute for Prevention Research and Social Medicine (BIPS), Achterstrasse 30, 28359 Bremen, Germany.
Biom J. 2011 Nov;53(6):914-26. doi: 10.1002/bimj.201100073.
For the all pairwise comparisons for equivalence of k (k≥2) treatments Lauzon and Caffo proposed simply to divide the type I error level α by k-1 to achieve a Bonferroni-based familywise error control when declaring pairs of two treatments equivalent. This rule is shown to be too liberal for k≥4. It works for k=3 yet for reasons not considered by Lauzon and Caffo. Based on the two one-sided testing procedures and using the closure test principle we develop valid alternatives based on Bonferroni's inequality. The set H of intersection hypotheses reveals a rich structure, leading to the possibility to present H as a directed acyclic graph (DAG). This in turn allows using some graph theoretical theorems and eases proving properties of the resulting multiple testing problems.
对于k(k≥2)种治疗方法的所有两两等效性比较,Lauzon和Caffo建议简单地将I型错误水平α除以k - 1,以便在声明两种治疗方法等效时实现基于Bonferroni的家族性错误控制。对于k≥4,该规则被证明过于宽松。对于k = 3它是有效的,但原因并非Lauzon和Caffo所考虑的。基于两个单侧检验程序并使用封闭检验原理,我们基于Bonferroni不等式开发了有效的替代方法。交集假设集H揭示了丰富的结构,从而有可能将H表示为有向无环图(DAG)。这反过来又允许使用一些图论定理,并简化了对由此产生的多重检验问题性质的证明。