Suppr超能文献

应用联合测量和建模方法定量估算加利福尼亚州莫诺湖裸露干盐湖的风沙尘排放。

Application of a combined measurement and modeling method to quantify windblown dust emissions from the exposed playa at Mono Lake, California.

机构信息

Great Basin Unified Air Pollution Control District, Bishop, California 93514, USA.

出版信息

J Air Waste Manag Assoc. 2011 Oct;61(10):1036-45. doi: 10.1080/10473289.2011.596760.

Abstract

Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).

摘要

由于风蚀而产生的粒径小于等于 10 微米的颗粒物(PM10)的排放,会随着地表状况的变化而显著变化。结壳的形成、机械干扰、土壤质地、湿度以及土壤的化学组成都会影响风蚀事件中尘埃的排放量。在加利福尼亚州的莫诺湖,应用了一种改良的方法来量化风扬尘排放,以考虑到不断变化的地表状况。该方法结合了实时风沙通量监测、环境 PM10 监测和扩散模型,以估算扬尘排放及其下风影响。该方法确定了高排放期和地表稳定期(无风沙通量),即使风速可能很高。使用了一个由 25 个考克斯沙收集器(CSC)组成的网络来测量跃移颗粒的质量,以估算 2 平方公里范围内的风沙通量率。两个电子传感器(Sensits)用于实时解析 CSC 沙质量,以估算每小时的风沙通量率,一个周边渐缩元素振荡微天平(TEOM)监测器则测量每小时的 PM10 浓度。通过扩散模型将每小时的风沙通量率与每小时的 PM10 浓度联系起来,以反向计算垂直 PM10 通量与水平风沙通量的比值(K 因子)。发现几何平均值 K 因子(K(f))随季节变化,地表以上 15 厘米处测量的风沙通量的 K(f) 值范围在 1.3 x 10(-5) 到 5.1 x 10(-5) 之间(q15)。通过将季节性 K 因子应用于风沙通量测量值,计算出每小时的 PM10 排放量(F = K(f) x q15)。研究区域的最大每小时 PM10 排放速率为 76 g/m2 x hr(10 米风速= 23.5 m/sec)。最大日 PM10 排放量估计为 450 g/m2 x day,年排放量为 1095 g/m2 x yr。美国环保署(EPA)导则 AERMOD 扩散模型使用每小时的 PM10 排放量来估算下风区的环境影响。模型预测与监测浓度吻合较好,每小时 PM10 浓度范围在 16 到超过 60,000 微克/立方米之间(斜率= 0.89,R2= 0.77)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验