Suppr超能文献

相似文献

1
Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents.
J Med Chem. 2011 Dec 22;54(24):8582-91. doi: 10.1021/jm201134m. Epub 2011 Nov 29.
2
3
Computer-aided discovery of anti-HIV agents.
Bioorg Med Chem. 2016 Oct 15;24(20):4768-4778. doi: 10.1016/j.bmc.2016.07.039. Epub 2016 Jul 21.
4
Structure-based evaluation of C5 derivatives in the catechol diether series targeting HIV-1 reverse transcriptase.
Chem Biol Drug Des. 2014 May;83(5):541-9. doi: 10.1111/cbdd.12266. Epub 2014 Mar 14.
5
Optimization of benzyloxazoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase to enhance Y181C potency.
Bioorg Med Chem Lett. 2013 Feb 15;23(4):1110-3. doi: 10.1016/j.bmcl.2012.11.115. Epub 2012 Dec 12.
6
Picomolar inhibitors of HIV reverse transcriptase featuring bicyclic replacement of a cyanovinylphenyl group.
J Am Chem Soc. 2013 Nov 6;135(44):16705-13. doi: 10.1021/ja408917n. Epub 2013 Oct 24.
7
Torsional flexibility of undecorated catechol diether compound as potent NNRTI targeting HIV-1 reverse transcriptase.
J Mol Graph Model. 2019 Jan;86:286-297. doi: 10.1016/j.jmgm.2018.10.026. Epub 2018 Oct 30.
8
Development of nonnucleoside HIV reverse transcriptase inhibitors.
Methods Enzymol. 1996;275:440-72. doi: 10.1016/s0076-6879(96)75026-7.
10
Discovery of dimeric inhibitors by extension into the entrance channel of HIV-1 reverse transcriptase.
Bioorg Med Chem Lett. 2012 Feb 15;22(4):1565-8. doi: 10.1016/j.bmcl.2011.12.132. Epub 2012 Jan 5.

引用本文的文献

4
Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase.
Eur J Med Chem. 2023 Dec 15;262:115894. doi: 10.1016/j.ejmech.2023.115894. Epub 2023 Oct 20.
6
The maximal and current accuracy of rigorous protein-ligand binding free energy calculations.
Commun Chem. 2023 Oct 14;6(1):222. doi: 10.1038/s42004-023-01019-9.
7
Towards design of drugs and delivery systems with the Martini coarse-grained model.
QRB Discov. 2022 Oct 12;3:e19. doi: 10.1017/qrd.2022.16. eCollection 2022.
8
Recent Advances in the Synthesis and Applications of m-Aryloxy Phenols.
Molecules. 2023 Mar 15;28(6):2657. doi: 10.3390/molecules28062657.
9
Design, synthesis, and biological testing of biphenylmethyloxazole inhibitors targeting HIV-1 reverse transcriptase.
Bioorg Med Chem Lett. 2023 Mar 15;84:129216. doi: 10.1016/j.bmcl.2023.129216. Epub 2023 Mar 3.

本文引用的文献

1
Efficient discovery of potent anti-HIV agents targeting the Tyr181Cys variant of HIV reverse transcriptase.
J Am Chem Soc. 2011 Oct 5;133(39):15686-96. doi: 10.1021/ja2058583. Epub 2011 Sep 9.
2
Molecular mechanical study of halogen bonding in drug discovery.
J Comput Chem. 2011 Sep;32(12):2564-74. doi: 10.1002/jcc.21836. Epub 2011 May 19.
3
Systematic investigation of halogen bonding in protein-ligand interactions.
Angew Chem Int Ed Engl. 2011 Jan 3;50(1):314-8. doi: 10.1002/anie.201006781.
4
Halogen bonding: an electrostatically-driven highly directional noncovalent interaction.
Phys Chem Chem Phys. 2010 Jul 28;12(28):7748-57. doi: 10.1039/c004189k. Epub 2010 Jun 22.
5
Eastern extension of azoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase; cyano group alternatives.
Bioorg Med Chem Lett. 2010 Apr 15;20(8):2485-8. doi: 10.1016/j.bmcl.2010.03.006. Epub 2010 Mar 4.
6
Nonnucleoside reverse transcriptase inhibitor resistance and the role of the second-generation agents.
Ann Pharmacother. 2010 Jan;44(1):157-65. doi: 10.1345/aph.1M359. Epub 2009 Dec 8.
7
Perspective on Free-Energy Perturbation Calculations for Chemical Equilibria.
J Chem Theory Comput. 2008 May 9;4(6):869-876. doi: 10.1021/ct800011m.
8
The search for potent, small molecule NNRTIs: A review.
Bioorg Med Chem. 2009 Aug 15;17(16):5744-62. doi: 10.1016/j.bmc.2009.06.060. Epub 2009 Jul 3.
10
Efficient drug lead discovery and optimization.
Acc Chem Res. 2009 Jun 16;42(6):724-33. doi: 10.1021/ar800236t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验